Open Access
ITM Web Conf.
Volume 20, 2018
International Conference on Mathematics (ICM 2018) Recent Advances in Algebra, Numerical Analysis, Applied Analysis and Statistics
Article Number 02014
Number of page(s) 9
Section Numerical and Applied Analysis
Published online 12 October 2018
  1. Vergnaud, A., Perez, L., Lucidarme, P., Autrique, L., “DARC-EDP : Conception du prototype”. In 4ième Journées des Démonstrateurs en Automatique. Université d’Angers (2013). [Google Scholar]
  2. Vergnaud, A., Tran, T. P., Perez, L., Lucidarme, P., Autrique, L., “Deployment strategies of mobile sensors for monitoring of mobile sources: method and prototype”. In Control Architectures of Robots 2015, 10th National Conference - CAR2015, (2015). [Google Scholar]
  3. Beddiaf, S., “Identification paramétrique de systèmes d’EDP paraboliques non linéaires en géométrie 3D par une méthode de régularisation itérative”. Thèse de doctotat, Université d’Angers (2013). [Google Scholar]
  4. Vergnaud, A., “Adaptive deployment of a mobile sensors network to optimize the monitoring of an evolutionary phenomenon described by partial differential equations”. Doctoral thesis, University of Angers (2015). [Google Scholar]
  5. Beddiaf, S., Perez, L., Autrique, L., Jolly, J.-C., “Parametric identification of a heating mobile source in a three-dimensional geometry”. Inverse Problems in Science and Engineering, 23(1), 93–111, (2015). [CrossRef] [Google Scholar]
  6. Lefèvre, F., Le Niliot, C., “A boundary element inverse formulation for multiple point heat sources estimation in a diffusive system: Application to a 2D experiment”. Inverse Problems in Engineering, 10(6), 539–557, (2002). [CrossRef] [Google Scholar]
  7. Martin, T. J., Dulikravich, G. S.,“Inverse Determination of Boundary Conditions and Sources in Steady Heat Conduction With Heat Generation”. Journal of Heat Transfer, 118(3), 546–554, (1996). [CrossRef] [Google Scholar]
  8. Gillet, L. P. and L. A. and M., “Implementation of a conjugate gradient algorithm for thermal diffusivity identification in a moving boundaries system”. Journal of Physics: Conference Series, 135(1), 12082, (2008). [CrossRef] [Google Scholar]
  9. DWPepper, JC Heinrich, “The finite element method – Basic concepts and Aplications”, Taylor and Francis, Group, pp. 240 (1992). [Google Scholar]
  10. L Edsberg, “Introduction to computation and modeling for differential equations”, Wiley-Interscience, pp. 256 (2008). [Google Scholar]
  11. AJ Baker, “Finite elements: computational engineering sciences”, Wiley, pp. 288 (2012). [Google Scholar]
  12. WBJ Zimmerman, “Multiphysics modeling with finite element methods”, World Scientific Publishing, pp. 432. (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.