Open Access
Issue
ITM Web Conf.
Volume 21, 2018
Computing in Science and Technology (CST 2018)
Article Number 00014
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20182100014
Published online 12 October 2018
  1. M. Bolanowski, A. Paszkiewicz, The use of statistical signatures to detect anomalies in computer network, Lecture Notes In Electrical Engineering, 324, 251–260, (2015). [CrossRef] [Google Scholar]
  2. F. Simmross-Wattenberg, J. Asensio-Perez, P. Casaseca-de-la-Higuera, M. Martin-Fernandez, I. Dimitriadis, C. Alberola-Lope, Anomaly Detection in Network Traffic Based on Statistical Inference and alpha-Stable Modeling, IEEE Transactions on Dependable and Secure Computing, 8(4), 494–509, (2011). [CrossRef] [Google Scholar]
  3. W. Zhang, Q. Yang, Y. Geng, A Survey of Anomaly Detection Methods in Networks, Computer Network and Multimedia Technology, CNMT 2009, International Symposium on, 1–3, (2009). [Google Scholar]
  4. S. Oshima, T. Nakashima, Computational Complexity of AnomalyDetection Methods, Seventh International Conference on Broadband, Wireless Computing, Communication and Applications, 664–649, (2012). [Google Scholar]
  5. P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, E. Vázquez, Anomaly-based network intrusion detection: Techniques, systems and challenges, Computers & Security, 28(1-2), 18–28, (2009). [CrossRef] [Google Scholar]
  6. W. Han, W. Xiong, Y. Xiao and others, A class of Non-statistical Traffic Anomaly Detection in Complex Network Systems, 32nd International Conference on Distributed Computing Systems (ICDCSW), 640–646, (2012). [Google Scholar]
  7. F. Palmieri: Network anomaly detection through nonlinear analysis, Computers & Security, 29(7), 737–755, (2010). [CrossRef] [Google Scholar]
  8. T. Pełech-Pilichowski, J.T. Duda, Low-frequency signal reconstruction and abrupt change detection in non-stationary time series by enhanced moving trend based filters, Studies in Computational Intelligence 579, 111–125, (2015). [Google Scholar]
  9. M. Bolanowski, B. Twaróg, R. Mlicki, Anomalies detection in computer networks with the use of SDN, Measurement Automation Monitoring 61, 443–445, (2015). [Google Scholar]
  10. M. Bolanowski, A. Paszkiewicz, Nowy model detekcji zagrożeń w sieci komputerowej, Przegląd Elektrotechniczny, 89, 308–311, (2013). [Google Scholar]
  11. M. Bolanowski, A. Paszkiewicz, M. Wroński, R. Żegleń, Representativeness analysis and possible applications of partial network data flows, Measurement Automation Monitoring, 62(01), 29–32, (2016). [Google Scholar]
  12. http://www.juniper.net/us/en/. [Google Scholar]
  13. https://suricata-ids.org/. [Google Scholar]
  14. https://rules.emergingthreats.net/open/suricata/rules. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.