Open Access
ITM Web Conf.
Volume 21, 2018
Computing in Science and Technology (CST 2018)
Article Number 00016
Number of page(s) 14
Published online 12 October 2018
  1. R. Pantos, W. May, HTTP live streaming, IETF, Informational Internet-Draft 2582, (2011). [Google Scholar]
  2. M. Seufert, et al., A survey on quality of experience of HTTP adaptive streaming, IEEE Commun Surveys Tuts, 17(1): 469–492, (2015). [CrossRef] [Google Scholar]
  3. N. A. Saqib, Y. Shakeel, M. A. Khan, H. Mehmood, M. Zia, An effective empirical approach to VoIP traffic classification. Turk J Elec Eng & Comp Sci, 25: 888–900, (2017). [CrossRef] [Google Scholar]
  4. C. Sieber, A. Blenk, M. Hinteregger, W. Kellerer, The cost of aggressive HTTP adaptive streaming: Quantifying YouTube's redundant traffic, In Proc. IFIP/IEEE IM’15, pp. 1261–1267, (2015). [Google Scholar]
  5. E. Essaili E, et al, QoE-based traffic and resource management for adaptive HTTP video delivery in LTE, IEEE Trans Circuits Syst Video Technol, 25(6): 988–1001, (2015). [CrossRef] [Google Scholar]
  6. J. Samain, G. Carofiglio, L. Muscariello, et al., Dynamic Adaptive Video Streaming: Towards a Systematic Comparison of ICN and TCP/IP, IEEE transactions on Multimedia, 19(10): 2166–2181, (2017). [CrossRef] [Google Scholar]
  7. Cisco. Visual networking index: Global mobile data traffic forecast update, 2016–2021, White Paper, (2017). [Google Scholar]
  8. I. Santos-Gonalez, A. Rivero-Garcia, J. Molina-Gil, P. Caballero-Gil, Implementation and Analysis of Real-Time Streaming Protocols. Reindl LM, Ed. Sensors (Basel, Switzerland), 17(4): 846, (2017). [CrossRef] [Google Scholar]
  9. T. Zinner, O. Abboud, O. Hohlfeld, T. Hossfeld, P. Tran-Gia, Towards QoE management for scalable video streaming; Proc. of ITC Spec. Sem. on Multimedia Applications-Traffic, Performance and QoE; Miyazaki, Japan, pp. 64–69, (2010). [Google Scholar]
  10. W. W. Leland, M. S. Taqqu, W. Willinger, D. V. Wilson, On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans on Netw, 2(1):1–15, (1994). [Google Scholar]
  11. S. Vig, Network Congestion as an Emergent Phenomena in Internet Traffic, (2011). [Google Scholar]
  12. E. Manley, T. Cheng, Understanding Road Congestion as an Emergent Property of Traffic Networks, Proc. of 14th World Multi-conference on Systemics, Cybernetics and Informatics, pp. 25–34, (2010). [Google Scholar]
  13. A. Popescu, Traffic self-similarity, In Proc of the IEEE ICT2001, pp. 20–24, (2001). [Google Scholar]
  14. M. Da Silva, A. Correia, Transmission Techniques for Emergent Multicast and Broadcast Systems, CRC Press, (2010). [CrossRef] [Google Scholar]
  15. R. Wittmann, Multicast Communication: Protocols & Applications, MK, (20010. [Google Scholar]
  16. S. S. Manvi, M. S Kakkasager, Multicast routing in mobile ad hoc networks by using a multiagent system, Infn Scien, 178(6): 1611–1628, (2008). [CrossRef] [Google Scholar]
  17. B. Williamson, Developing IP Multicast Networks, Volume I, Cisco Press, (1999). [Google Scholar]
  18. E. Rosenberg, A Primer of Multicast Routing, Springer, (2012). [CrossRef] [Google Scholar]
  19. M. Mazurek, P. Dymora. Network Anomaly Detection Based on the Statistical Self-similarity Factor, Analysis and Simulation of Electrical and Computer Systems, LNEE; 324: 271–287, (2015). [Google Scholar]
  20. P. Dymora, M. Mazurek, K. Zelazny, Operating system efficiency evaluation on the base of measurements analysis with the use of non-extensive statistics elements, Annales UMCS, Informatica, 14(3): 65–75, (2014). [Google Scholar]
  21. B. B. Mandelbrot, J.W. van Ness, Fractional Brownian Motions, Fractional Noises and Applications. SIAM Review, 10: 422–437, (1968). [Google Scholar]
  22. M. Mazurek, P. Dymora, Network anomaly detection based on the statistical self-similarity factor for HTTP protocol, Electr Rev, 90(1): 127–130, (2014). [Google Scholar]
  23. R. J. Adler, R. E. Feldman, M. S. Taqqu, A Practical Guide to Heavy Tails: Statistical Techniques and Applications (Eds.). Birkhauser, Boston, (1998). [Google Scholar]
  24.\_US/junos/topics/concept/multicast-pim-overview.html, (2018). [Google Scholar]
  25., (2018). [Google Scholar]
  26., (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.