Open Access
Issue
ITM Web Conf.
Volume 27, 2019
The 9th International Conference on Digital Information and Communication Technology and its Applications (DICTAP2019)
Article Number 03001
Number of page(s) 4
Section Biometrics Technologies
DOI https://doi.org/10.1051/itmconf/20192703001
Published online 10 May 2019
  1. S. Osowski, L. T. Hoai, and T. Markiewicz, Support vector machine-based expert system for reliable heartbeat recognition, IEEE Trans. Biomed Eng., 51(4), 2004, 582–589. [CrossRef] [Google Scholar]
  2. P. de Chazal, M. O’Dwyer, and R. Reilly, Automatic classification of heartbeats using ECG morphology and heartbeat interval features, IEEE Trans. Biomed Eng., 51(7), 2004, 11961206. 2004, 1196–1206. [CrossRef] [Google Scholar]
  3. E. J. da S. Luz, T. M. Nunes, V H. C. de Albuquerque, J. P. Papa, and D. Menotti, ECG arrhythmia classifcation based on optimum-path forest, Expert Systems with Applications, 40(9), 2013, 3561–3573. [CrossRef] [Google Scholar]
  4. I. Guier and E. D. Obeyli, ECG beat classifier designed by combined neural network model, Pattern Recognition, 38(2),2005, 199–208. [CrossRef] [Google Scholar]
  5. Wang, Guijin & Zhang, Chenshuang & Liu, Yongpan & Yang, Huazhong & Fu, Dapeng & Wang, Haiqing & Zhang, Ping. (2018). A Global and Updatable ECG Beat Classification System Based on Recurrent Neural Networks and Active Learning. Information Sciences. 10.1016/j.ins.2018.06.062. [Google Scholar]
  6. S. Kiranyaz and M. G. Turker Ince, Realtime patient speci fic ECG classi fication by 1-d convolutional neural net works, IEEE Trans.Biomed. Eng., 63(3), 2016, 664–675. [CrossRef] [Google Scholar]
  7. J. S. Wang, W. C. Chiang, Y. L. Hsu, and Y. T. C. Yang, ECG arrhythmia classification using a probabilistic neural network with a feature reduction method, Neurocomputing, 116(10), 2013, 38–45. [CrossRef] [Google Scholar]
  8. P. de Chazal and R. B. Reilly, A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features, IEEE Trans.Biomed. Eng., 53(12), 2006, 2535–2543. [CrossRef] [Google Scholar]
  9. G. Kong, Block-based for personalized ECG W. Jiang and S. neural networks - signal classification, IEEE Trans.Biomed. Eng., 18(6), 2007, 1750–1761. [Google Scholar]
  10. T. Ince, S. Kiranyaz, and M. Gabbouj, A generic and robust system for automated patient-specific classification of ECG signals, IEEE Trans.Biomed.Eng., 56(5), 2009, 1415–1426. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.