Open Access
Issue
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
Article Number 03029
Number of page(s) 9
Section Computing
DOI https://doi.org/10.1051/itmconf/20203203029
Published online 29 July 2020
  1. World Cancer Research Fund on Skin Cancer Statistics. https://www.wcrf.org/dietandcancer/cancer-trends/skin-cancer-statistics. Accessed 07 Mar 2020 [Google Scholar]
  2. World Health Organization on Climate Change and Human Health. https://www.who.int/globalchange/climate/summary/en/index7.html. Accessed 07 Mar 2020 [Google Scholar]
  3. S. Majumder and** M.A. Ullah, Feature Extraction from Dermoscopy Images for an Effective Diagnosis of Melanoma Skin Cancer, 2018 10th International Conference on Electrical and Computer Engineering (ICECE), 185-188 (2018). https://doi.org/10.1109/ICECE.2018.8636712 [Google Scholar]
  4. T. Mendonça, P.M. Ferreira, J.S. Marques, A.R.S. Marcal, J. Rozeira, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 5437-5440 (2013). https://doi.org/10.1109/EMBC.2013.6610779 [Google Scholar]
  5. K. Eltayef, Y. Li, X.Liu, Detection of Melanoma Skin Cancer in Dermoscopy Images, J. Phys.: Conf. Ser. 787 012034 (2017). https://doi.org/10.1088/1742-6596/787/1/012034 [Google Scholar]
  6. J. Premaladha, K.S. Ravichandran, Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms, J. Med Syst 40, 96 (2016). https://doi.org/10.1007/s10916-016-0460-2 [Google Scholar]
  7. S. Jain, V. Jagtap, N. Pise, Computer aided Melanoma skin cancer detection using Image Processing, J. Proce-dia Computer Science 48, 735-740 (2015). https://doi.org/10.1016/j.procs.2015.04.209 [Google Scholar]
  8. M.A. Sheha, M.S. Mabrouk, A. Sharawy, Automatic Detection of Melanoma Skin Cancer using Texture Analysis, J. Comp App (0975-8887) 42-No.20, 22-26 (2012). https://doi.org/10.5120/5817-8129 [Google Scholar]
  9. A.G. Isasi, B.G. Zapirain, A. Mendez Melanomas non-invasive diagnosis application based on the ABCD rule and pattern recognition image processing algorithms, J. Comp in Bio and Med 41, issue 9, 742-755, (2011). https://doi.org/10.1016/j.compbiomed.2011.06.010 [Google Scholar]
  10. Z. She, Y. Liu, A. Damatoa, Combination of features from skin pattern and ABCD analysis for lesion classification, J. Skin Research and Tech, 13, 25-33 (2007). https://doi.org/10.1111/j.1600-0846.2007.00181.x [Google Scholar]
  11. PH2 Database. https://www.fc.up.pt/addi/ph2\%20database.html [Google Scholar]
  12. N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9, no. 1, 62-66 (1979). https://doi.org/10.1109/TSMC.1979.4310076 [Google Scholar]
  13. T.F. Chan and** L.A. Vese, Active contours without edges, IEEE Transactions on Image Processing, 10, no. 2, 266-277, (2001). https://ieeexplore.ieee.org/document/902291 [Google Scholar]
  14. D. Mumford and** J. Shah, Optimal approximation by piecewise smooth functions and associated varia-tional problems, Comm. Pure Appl. Math, 42, 577-685, (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.