Open Access
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
Article Number 04010
Number of page(s) 13
Section Modernization of Engineering Courses based on software for Computer Simulation
Published online 09 December 2020
  1. E.V. Smirnova, A.A. Dobrjkov, A.P. Karpenko, V.V. Syuzev, Mentally structured educational technology and engineers preparation quality management, Commun. Comput. Inf. Sci. 754, pp. 119-132 (2017) [Google Scholar]
  2. A.I. Vlasov, L.V. Juravleva, V.A. Shakhnov, Visual environment of cognitive graphics for end-to-end engineering project-based education, J. Appl. Eng. Sci. 17, pp. 99–106 (2019) [CrossRef] [Google Scholar]
  3. I.G. Doronkina, E.E. Krasnovskiy, E.V. Zakharova, P.V. Ulianishchev, L.V. Ulyanishcheva, Academic cloud services: Innovative solutions and international practice, J. Adv. Res. Dyn. Control Syst. 11, pp. 65–72 (2019) [CrossRef] [Google Scholar]
  4. N.M. Mezhennaya, O.V. Pugachev, On perception of computer algebra systems and Microsoft excel by engineering students, Probl. Educ. 21st Century. 77, pp. 379–395 (2019). [CrossRef] [Google Scholar]
  5. N.M. Mezhennaya, O.V. Pugachev, On the results of using interactive education methods in teaching probability theory, Probl. Educ. 21st Century. 76, pp. 678–692 (2018) [Google Scholar]
  6. J. Blank, K. Deb, pymoo: Multi-objective Optimization in Python. Preprint at (2020). [Google Scholar]
  7. S. Gavryushin, V. Godzikovsky, S. Gavrilenkov, Investigation of the sensitivity of a strain gauge force sensor to bending moment, In: E.A. Mikrin, D.O. Rogozin, A.A. Aleksandrov, V.A. Sadovnichy, I.B. Fedorov, V.I. Mayorova, (Eds.), Proceedings of the XLIII Academic Space Conference: dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists, Pioneers of space exploration, Moscow, AIP (2019). [Google Scholar]
  8. X. Li, H. He, H. Ma, Structure design of six-component strain-gauge-based transducer for minimum cross-interference via hybrid optimization methods, Structural and Multidisciplinary Optimization, 60(1), pp. 301-314 (2019). [CrossRef] [Google Scholar]
  9. A.R. Tavakolpour-Saleh, A.R. Setoodeh, M.A. Gholamzadeh, novel multi-component strain-gauge external balance for wind tunnel tests: Simulation and experi-ment, Sensors and Actuators A: Physical, 247, pp. 172-186 (2016). [CrossRef] [Google Scholar]
  10. A.R. Tavakolpour-Saleh, M.R. Sadeghzadeh, Design and development of a threecomponent force/moment sensor for underwater hydrodynamic tests, Sensors and Actuators A: Physical, 216, pp. 84-91 (2014). [CrossRef] [Google Scholar]
  11. Catalog of HBM strain gauges,, last accessed 2019/11/02. [Google Scholar]
  12. Website of the pymoo library,, last accessed 2019/11/02. [Google Scholar]
  13. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6, pp. 182–197 (2002). [Google Scholar]
  14. N. Agrawal, G.P. Rangaiah, A.K. Ray, S.K. Gupta, Design stage optimization of an industrial low-density polyethylene tubular reactor for multiple objectives using NSGA-II and its jumping gene adaptations, Chem. Eng. Sci. 62, pp. 2346–2365 (2007). [CrossRef] [Google Scholar]
  15. E.G. Bekele, J.W. Nicklow, Multi-objective automatic calibration of SWAT using NSGA-II, J. Hydrol. 341, pp. 165–176 (2007). [CrossRef] [Google Scholar]
  16. S. Honda, T. Igarashi, Y. Narita, Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II, Compos. Part B Eng. 45, pp. 1071–1078 (2013). [CrossRef] [Google Scholar]
  17. Y. Li, S. Liao, G. Liu, Thermo-economic multi-objective optimization for a solar-dish Brayton system using NSGA-II and decision making, Int. J. Electr. Power Energy Syst. 64, pp. 167–175 (2015). [CrossRef] [Google Scholar]
  18. Z. Moravej, F. Adelnia, F. Abbasi, Optimal coordination of directional overcurrent relays using NSGA-II, Electr. Power Syst. Res. 119, pp. 228–236 (2015). [CrossRef] [Google Scholar]
  19. S. Chand, M. Wagner, Evolutionary many-objective optimization: a quick-start guide, Surv. Oper. Res. Manag. Sci. 20, pp. 35–42 (2015) [Google Scholar]
  20. K. Deb, Multi-objective genetic algorithms: problem difficulties and construction of test problems, Evol. Comput. 7, pp. 205–230 (1999). [CrossRef] [Google Scholar]
  21. S.I. Gavrilenkov, S.S. Gavriushin, V.A. Godzikovsky, Multicriteria approach to design of strain gauge force transducers, Proceedings of the Joint IMEKO TC1-TC7TC13-TC18 Symposium, St. Petersburg, IOP Publishing (2019). [Google Scholar]
  22. S.I. Gavrilenkov, S.S. Gavryushin, Development and Performance Evaluation of a Software System for Multi-objective Design of Strain Gauge Force Sensors, Zh. Hu, S. Petoukhov, M. He, (Eds.), Proceedings of the International Symposium on Computer Science, Digital Economy and Intelligent Systems CSDEIS 2019, Moscow, Springer (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.