Open Access
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
Article Number 04013
Number of page(s) 9
Section Modernization of Engineering Courses based on software for Computer Simulation
Published online 09 December 2020
  1. W.P. Walters, J.A. Zukas, Fundamentals of Shaped Charges. N.Y., John Wiley and Sons, p. 298 (1989) [Google Scholar]
  2. V.V. Selivanov, S.V. Fedorov, Ya.M. Nikolskaya, S.V. Ladov, Compact element formation for the modeling of the high-velocity impacts of particles onto spacecraft materials and construction elements in earth conditions, Acta Austronautica, vol. 135, pp. 34–43 (2017) [CrossRef] [Google Scholar]
  3. V.V. Selivanov, S.V. Fedorov, Ya.M. Nikolskaya, S.V. Ladov, Research of the explosive formation of a compact element for meteoroids fragments and space debris modelling, Acta Austronautica, vol. 163, pp. 84–90 (2019) [CrossRef] [Google Scholar]
  4. S.V. Fedorov, V.V. Selivanov, V.A. Veldanov, Calculation analysis of magnetic-pulse compaction of explosively formed high-velocity metal elements used for meteoroid protection testing, Acta Astronautica, Vol. 135, pp. 44–55 (2017). DOI: 10.1016/j.actaastro.2016.10.024 [CrossRef] [Google Scholar]
  5. S.V. Fedorov, S.V. Ladov, Ya.M. Nikolskaya, Computational and experimental research of explosive meteorial devices with combined cumulative liners of the semisphere-cylinder shape, Journal of Physics: Conference Series, Vol. 894, No 1. 012066 (2017). DOI: 10.1088/1742-6596/894/1/012066 [CrossRef] [Google Scholar]
  6. P.V. Kruglov, V.I. Kolpakov, Mechanism of explosive formation of high-velocity elongated projectiles from steel segment lining, Engineering Journal: Science and Innovation, 12 (2017). [Google Scholar]
  7. P.V. Kruglov, V.I. Kolpakov, Analysis of influence of metal linings profile heterogeneity on the high-speed elongated elements shape, Engineering Journal: Science and Innovation, 7 (2018). [Google Scholar]
  8. V.I. Kolpakov, I.A. Bolotina, P.V. Kruglov, Simulation of the design process of the high-speed elongated aircrafts with variable form, AIP Conference Proceedings 2171, 030016 (2019). DOI:// [CrossRef] [Google Scholar]
  9. N.A. Asmolovskiy, V.D. Baskakov, V.A. Tarasov, The impact of periodic disturbances on the formation of high-speed rod elements, Izvestia vuzov. Mashinostroenie, № 8, p. 8-14 (2013) [Google Scholar]
  10. K. Weimann, Research and development in the area of explosively formed projectiles charge technology, Propellants, explosives, pyrotechnics, vol. 18, iss. 5, pp. 294–298 (1993) [CrossRef] [Google Scholar]
  11. J. Liu, W. Gu, M. Lu, H. Xu, S. Wu, Formation of explosively formed penetrator with fins and its flight characteristics, Defense Technology, № 10, p.119-123 (2014). doi:10.1016/j.dt.2014.05.002. [CrossRef] [Google Scholar]
  12. D. Bender, B. Chhouk, R. Fong, B. Rice, E. Volkmann, Explosively formed penetrators (EFP) with canted fins, 19th International Symposium on Ballistics, Interlaken, Switzerland, 7–11 May 2001, Defence Science and Technology Organization, the International Ballistics Committee, Interlaken, DEStech Publications, pp. 755–761 (2001) [Google Scholar]
  13. W. Li, X. Wang, W. Li, The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator, International Journal of Impact Engineering, vol. 37, iss. 4, pp. 414–424 (2010) [CrossRef] [Google Scholar]
  14. R. Li, W.B. Li, X.M. Wang, Effects of control parameters of three-point initiation on the formation of an explosively formed projectile with fins, Shock Waves, vol. 28, iss. 2, pp. 191–204 (2018) [CrossRef] [Google Scholar]
  15. S. Pappu, L.E. Murr, Shock deformation twinning in an iron explosively formed projectile, Materials Science and Engineering, vol. 284, iss. 1–2, pp. 148–157 (2000) [CrossRef] [Google Scholar]
  16. S. Pappu, L.E. Murr, Hydrocode and microstructural analysis of explosively formed penetrators, Journal of materials science, vol. 37, iss. 2, pp. 233–248 (2002) [CrossRef] [Google Scholar]
  17. F. Hu, H. Wu, Q. Fang, J. C. Liu, Impact resistance of concrete targets pre-damaged by explosively formed projectile (EFP) against rigid projectile, International Journal of Impact Engineering, vol. 122, pp. 251–264 (2018) [CrossRef] [Google Scholar]
  18. F. Hu, H. Wu, Q. Fang, J. C. Liu, B. Liang, X. Z. Kong, Impact performance of explosively formed projectile (EFP) into concrete targets, International Journal of Impact Engineering, vol. 109, pp. 150–166 (2017) [CrossRef] [Google Scholar]
  19. V.V. Selivanov, Numerical simulation and experimental study of explosive projectile devices /V.V. Selivanov, E.F. Gryaznov, N.A. Goldenko, A.D. Sudomoev, V.A. Feldstein, Acta Astronautica, Vol. 135, pp. 56–62 (2017). DOI: 10.1016/j.actaastro.2017.01.042. [CrossRef] [Google Scholar]
  20. D. Cardoso, F. Teixeira-Dias, Modelling the formation of explosively formed projectiles (EFP), International Journal of Impact Engineering, vol. 93, pp. 116–127 (2016). DOI: 10.1016/j.ijimpeng.2016.02.014 [CrossRef] [Google Scholar]
  21. J. Wu, J. Liu, Y. Du, Experimental and numerical study on the flight and penetration properties of explosively-formed projectile, International Journal of Impact Engineering, vol. 34, iss. 7, pp. 1147–1162 (2007). [CrossRef] [Google Scholar]
  22. S. Rolc, J. Buchar, Z. Akstein, Computer simulation of explosively formed projectiles (EFP), Proc. of the 23th Int. Symp. on Ballistics. Tarragona, Madrid, Spain, 16–20 April 2007, Universidad Politécnica de Madrid, International Ballistics Committee, Madrid, pp. 185–192 (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.