Open Access
Issue
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
Article Number 04014
Number of page(s) 13
Section Modernization of Engineering Courses based on software for Computer Simulation
DOI https://doi.org/10.1051/itmconf/20203504014
Published online 09 December 2020
  1. R.S. Mishra, M.W. Mahoney, Friction Stir Welding and Processing, ASM International, p. 333 (2007) [Google Scholar]
  2. A. Tongne, C. Desrayaud, M. Jahazi & E. Feulvarch, On material flow in friction stir welded al alloys, Journal of Materials Processing Technology, 239, pp. 284-296 (2017). doi:10.1016/j.jmatprotec.2016.08.030 [CrossRef] [Google Scholar]
  3. G. Wang, Y. Zhao & Y. Hao, Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing, Journal of Materials Science and Technology, 34(1), pp.73-91 (2018). doi:10.1016/j.jmst.2017.11.041 [CrossRef] [Google Scholar]
  4. A.G. Boitsov, D.N. Kuritsyn, M.V. Siluyanova & V.V. Kuritsyna, Friction stir welding in the aerospace industry, Russian Engineering Research, 38(12), pp. 1029-1033 (2018). doi:10.3103/S1068798X18120043 [CrossRef] [Google Scholar]
  5. F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen & T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, Journal of Materials Science and Technology, 34(1), pp. 39-57 (2018). doi:10.1016/j.jmst.2017.10.024 [CrossRef] [Google Scholar]
  6. J. Liu, Application and development of friction stir welding technology in high speed EMU manufacturing, China Welding (English Edition), 27(4), pp. 57-62 (2018). doi:10.12073/j.cw.20180705001 [Google Scholar]
  7. G.K. Padhy, C.S. Wu & S. Gao, Friction stir based welding and processing technologies processes, parameters, microstructures and applications, Journal of Materials Science and Technology, 34(1), pp. 1-38 (2018). doi:10.1016/j.jmst.2017.11.029 [CrossRef] [Google Scholar]
  8. V.V. Khanin, P.V. Kruglov, Estimation of technological possibilities of branch pipes welding on bottoms of rocket_space products by friction stir welding, Izvestia vuzov. Seriya Mashinostroenie, № 7, pp.67-71 (2012). [Google Scholar]
  9. A.G. Ponarin, P.V. Kruglov, Features of Manufacturing Bottoms and Rocket Tank Bodies Using Friction Stir Welding, Aerospace scientific journal, №2 (2015). DOI: 10.7463/aersp.0215.0789685. [Google Scholar]
  10. Product brochure Nova-tech Engineering. URL: http://www.ntefsw.com/product_brochures.htm (Access at 09.12.2019). [Google Scholar]
  11. Friction Stir Welding. Manufacturing Technology (MTI). URL: https://www.mtiwelding.com/technologies/friction-stir-welding/ (Access at 09.12.2019). [Google Scholar]
  12. Rosio, Friction Stir Welding Robot for welding of challenging joints. URL: http://products.esab.com/ESABImages/rosio_XA00133620_cze.pdf (Access at 09.12.2019). [Google Scholar]
  13. B.S. Cota, A.Q. Bracarense & F.G.F. Coelho, Sizing of a robot system for joining by friction stir welding process, [Dimensionamento de um sistema robotizado para a soldagem pelo processo friction stir welding] Soldagem e Inspecao, 22(4), pp. 480-493 (2017). doi:10.1590/0104-9224/SI2204.07 [Google Scholar]
  14. K. Kolegain, F. Leonard, S. Zimmer-Chevret, A.B. Attar & G. Abba, A feedforward deflection compensation scheme coupled with an offline path planning for robotic friction stir welding, IFAC-PapersOnLine, 51(11), pp. 728-733 (2018). doi:10.1016/j.ifacol.2018.08.405 [CrossRef] [Google Scholar]
  15. F. Lijin & S. Longfei, Design of a novel robotic arm with non-backlash driving for friction stir welding process, International Journal of Advanced Manufacturing Technology, 93(5-8), pp. 1637-1650 (2017). doi:10.1007/s00170-017-0617-2 [CrossRef] [Google Scholar]
  16. T. Oka, Robot friction stir welding system, Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 87(8), pp. 552-554 (2018). doi:10.2207/jjws.87.552 [CrossRef] [Google Scholar]
  17. T. Sun, H. Wu, B. Lian, Y. Qi, P. Wang & Y. Song, Stiffness modeling, analysis and evaluation of a 5 degree of freedom hybrid manipulator for friction stir welding, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(23), pp. 4441-4456 (2017). doi:10.1177/0954406216668911 [CrossRef] [Google Scholar]
  18. M. Wan, W. Zhou, H. Luo & Y. Tian, Design and motion control of the high precision heavy load friction stir welding robot, [高精度重载搅拌摩擦焊机器人设计与运动控制] Jiqiren/Robot, 40(6), pp. 817-824 and p. 834 (2018). doi:10.13973/j.cnki.robot.170560 [Google Scholar]
  19. I. Zybin, K. Trukhanov, A. Tsarkov & S. Kheylo, Backing plate effect on temperature controlled FSW process, Paper presented at the MATEC Web of Conferences, p. 224 (2018). doi:10.1051/matecconf/201822401084 [Google Scholar]
  20. A.S. Chernyatin, Y.G. Matvienko, I.A. Razumovsky, Fatigue surface crack propagation and intersecting cracks in connection with welding residual stresses, Fatigue Fract Eng Mater Struct 2018; 41(10) (2018): 2140-52. [Google Scholar]
  21. V.V. Kovalev, R.S. Mikheev, N.V. Kobernik, A.L. Galinovskiy, I.V. Ershov, Formation of an intermetallic layer during arc facing of aluminum alloys onto a steel substrate, Russ Metall (Metally) 2017, 2017(13), pp. 1118-24 (2017) [CrossRef] [Google Scholar]
  22. B.F. Yakushin, A.V. Bakulo, I. N. Shiganov, Improving of weldability of heatstrengthened aluminum alloys, Tsvetn Met, 2016(5), pp. 79-84 (2016) [CrossRef] [Google Scholar]
  23. A.S. Chernyatin, Y.G. Matvienko & I.A. Razumovsky, Fatigue surface crack propagation and intersecting cracks in connection with welding residual stresses, Fatigue and Fracture of Engineering Materials and Structures, 41(10), pp. 2140-2152 (2018). doi:10.1111/ffe.12808. [Google Scholar]
  24. S. Chen, Y. Zhou, J. Xue, R. Ni, Y. Guo & J. Dong, High rotation speed friction stir welding for 2014 aluminum alloy thin sheets, Journal of Materials Engineering and Performance, 26(3), pp. 1337-1345 (2017). doi:10.1007/s11665-017-2524-y [CrossRef] [Google Scholar]
  25. Q. Chu, X.W. Yang, W.Y. Li, A. Vairis & W.B. Wang, Numerical analysis of material flow in the probeless friction stir spot welding based on coupled eulerian-lagrangian approach, Journal of Manufacturing Processes, 36, pp. 181-187 (2018). doi:10.1016/j.jmapro.2018.10.013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.