Open Access
Issue |
ITM Web Conf.
Volume 35, 2020
International Forum “IT-Technologies for Engineering Education: New Trends and Implementing Experience” (ITEE-2019)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 9 | |
Section | Legislative and Regulatory Regulation of Engineering Digital Education | |
DOI | https://doi.org/10.1051/itmconf/20203506005 | |
Published online | 09 December 2020 |
- N. Dneprovskaya, Assessment of the readiness of the Russian higher education for the digital economy, Statistika i ekonomika [Statistics and Economics]., Vol. 15, No. 4, pp. 16-28 (2018). DOI: http://dx.doi.org/10.21686/2500-3925-2018-4-16-28. [CrossRef] [Google Scholar]
- M.G. Sergeeva, N.N. Bedenko, T.Y. Tsibizova, M.S. Mohammad Anwar & T.G. Stanchuliak, Organisational economic mechanism of managing the growth of higher education services quality, Espacios, 39(21) (2018). Retrieved from www.scopus.com [Google Scholar]
- S.A. Gudkova, T.S. Yakusheva, A.A. Sherstobitova & V.I. Burenina, Modeling of scientific intercultural communication of the teaching staff at smart university (2019). doi:10.1007/978-981-13-8260-4_48 Retrieved from www.scopus.com [Google Scholar]
- N.V. Dneprovskaya, E.A. Yankovskaya, Klyuchevye ponyatiya koncepcii SMARTobrazovaniya [Key Concepts of the SMART Education]. Access: http://studydoc.ru/doc/4207951/klyuchevyeponyatiya-koncepcii-smar. [Google Scholar]
- M.G. Sergeeva, N.N. Bedenko, L.Z. Karavanova, T.Y. Tsibizova, I.S. Samokhin & M.S. Mohammad Anwar, «Educational company» (technology): Peculiarities of its implementation in the system of professional education, Espacios, 39(2) (2018). Retrieved from www.scopus.com [Google Scholar]
- T.Y. Tsibizova, V.M. Postnikov & S.B. Spiridonov, Analysis of the impact of technology lectures-visualizations on the results of control measures in various academic disciplines, Perspektivy Naukii Obrazovania, 33(3), pp. 358-363 (2018). Retrieved from www.scopus.com [Google Scholar]
- A.U. Kuvandykov, Smart-universitet v novyh usloviyah [Smart-University in new conditions]. http://lib.kstu.kz:8300/tb/fulltext/temat/Sovremennoe%20obrazovanie2017_1_37.pdf. [Google Scholar]
- I. Maslova, A. Frolov, A. Uzharinskyi, Organizational and technological principles of building a SMART platform for digital educational environment of a modern university (2018). https://www.researchgate.net/publication/325368935_ORGANIZATIONAL_AND_TECHNOLOGICAL_PRINCIPLES_OF_BUILDING_A_SMART_PLATFORM_FOR_DIGITAL_EDUCATIONAL_ENVIRONMENT_OF_A_MODERN_UNIVERSITY (DOI: 10.17770/sie2018vol1.3407). [Google Scholar]
- World Bank, Discussion Paper For International Seminar #1 ‘Digital Economy Concept, Trends and Viseions: Towards a FutureProof Strategy”, 20.12.2016 (2016). http://www.worldbank.org/en/events/2016/12/20/developing-the-digitaleconomy-in-russia-international-seminar-1#4. [Google Scholar]
- V.L. Uskov, J.P. Bakken, R.J. Howlett, L.C. Jain, (Eds.), Smart Universities: Concepts, Systems, and Technologies, p. 421, Springer, Cham (2018). ISBN 978-3-319-59453-8, https://doi.org/10.1007/978-3-319-59454-5 [Google Scholar]
- L.V. Glukhova, Y.S. Mitrofanova, Digitalization of economy and the particularities of its application in an integrated facility’s activity, The Bulletin of the Volga Region State University of Service, № 4 (2017) [Google Scholar]
- I. Lykourentzou, I. Giannoukos, V. Nikolopoulos, G. Mpardis & V. Loumos, Dropout prediction in e-learning courses through the combination of machine learning techniques, Computers&Education, 53(3), pp. 950–965 (2009) [Google Scholar]
- L.P. Macfadyen & S. Dawson, Mining LMS data to develop an “early warning system” for educators: A proof of concept, Computers&Education, 54(2), pp. 588–599 (2010) [Google Scholar]
- T.P. Skorikova, S.S. Khromov & N.V. Dneprovskaya, Distance learning in scientific and professional fields of communication (interdisciplinary approach, International Journal of Environmental and Science Education, 11(10), pp. 3467-3476 (2016). Retrieved from www.scopus.com [Google Scholar]
- G. Naveh, D. Tubin & N. Pliskin, Student satisfaction with learning management systems: A lens of critical success factors, Technology, PedagogyandEducation, 21(3), pp. 337–350 (2012) [Google Scholar]
- E. García, C. Romero, S. Ventura & C.D. Castro, An architecture for making recommendations to courseware authors using association rule mining and collaborative filtering, User Modelingand User-AdaptedInteraction, 19(1–2), pp. 99–132 (2009). Google Scholar [CrossRef] [Google Scholar]
- Dong UkIm, Jong Oh Lee, Mission-type Education Programs with Smart Device Facilitating, International Journal of Multimedia and Ubiquitous Engineering, Vol. 8, No. 2, March 9 (2013) [Google Scholar]
- S.A. Gudkova, T.S. Yakusheva, A.A. Sherstobitova & V.I. Burenina, Modeling, selection, and teaching staff training at higher school (2019). doi:10.1007/978-981-138260-4_54 Retrieved from www.scopus.com [Google Scholar]
- L.P. Macfadyen & S. Dawson, Mining LMS data to develop an “early warning system” for educators: A proof of concept, Computers&Education, 54(2), pp. 588–599 (2010) [Google Scholar]
- J. Zimmermann, K.H. Brodersen, H.R. Heinimann & J.M. Buhmann, A model-based approach to predicting graduate-level performance using indicators of undergraduatelevel performance, JEDM-JournalofEducationalDataMining, 7(3), pp. 151–176 (2015) [Google Scholar]
- N. Serdyukova, V. Serdyukov. Algebraic Formalization of Smart Systems Theory and Practice, chapter 6, Algorithm for a Comprehensive Assessment of the Effectiveness of a Smart System, 6.2.1 The Algorithm of a Complex Estimation of Efficiency of Functioning of the Innovation System, page 101», Smart innovation, Systems snd Technologies, Vol. 91, SpringerinternationalPublishing, AG (2018) [CrossRef] [Google Scholar]
- Y.S Mitrofanova, A.A. Sherstobitova & O.A. Filippova, Modeling the assessment of definition of a smart university infrastructure development level (2019). doi:10.1007/978-981-13-8260-4_50 Retrieved from www.scopus.com [Google Scholar]
- Y.S. Mitrofanova, A.A. Sherstobitova & O.A. Filippova, Modeling smart learning processes based on educational data mining tools (2019). doi:10.1007/978-981-138260-4_49 Retrieved from www.scopus.com [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.