Open Access
ITM Web Conf.
Volume 38, 2021
International Conference on Exploring Service Science (IESS 2.1)
Article Number 03001
Number of page(s) 6
Section Position Papers
Published online 07 May 2021
  1. Z. Liu, R. Kettimuthu, I. Foster, P.H. Beckman, Toward a smart data transfer node, Future Generation Computer Systems 89: 10–18 (2018) [Google Scholar]
  2. C. Tan, Y. Sun, G. Li, G. Jiang, D. Chen, H. Liu, Research on gesture recognition of smart data fusion features in the IoT, Neural Computing and Applications, 1–13 (2019) [Google Scholar]
  3. A. Lenk, L. Bonorden, A. Hellmanns, N. Roedder, S. Jaehnichen, Towards a taxonomy of standards in smart data, in IEEE International Conference on Big Data (Big Data), IEEE, 1749–1754 (2015) [Google Scholar]
  4. M.H. Alsharif, A.H. Kelechi, K. Yahya, S.A. Chaudhry, Machine learning algorithms for smart data analysis in internet of things environment: taxonomies and research trends, Symmetry 12(1), 88 (2020) [Google Scholar]
  5. F. Iafrate, From big data to smart data, John Wiley & Sons (2015) [Google Scholar]
  6. I. Triguero, D. Garcia-Gil, J. Maillo, J. Luengo, S. Garcia, F. Herrera, Transforming big data into smart data: An insight on the use of the k-nearest neighbors algorithm to obtain quality data, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9(2), e1289 (2019) [Google Scholar]
  7. J. Edelenbos, F. Hirzalla, L. van Zoonen, J. van Dalen, G. Bouma, A. Slob, A. Woestenburg, Governing the complexity of smart data cities: Setting a research agenda, Smart Technologies for Smart Governments, Springer 2018, 35–54 [Google Scholar]
  8. N. Dey, S. Wagh, P.N. Mahalle, M.S. Pathan, Applied machine learning for smart data analysis, CRC Press, 2019 [Google Scholar]
  9. U. Sivarajah, M.M. Kamal, Z. Irani, V. Weerakkody, Critical analysis of Big Data challenges and analytical methods, Journal of Business Research 70: 263–286 (2017) [Google Scholar]
  10. A. Sheth, Transforming big data into smart data: Deriving value via harnessing volume, variety, and velocity using semantic techniques and technologies, in IEEE 30th International Conference on Data Engineering (ICDE), IEEE Computer Society, (2014) [Google Scholar]
  11. S. Garcia, S. Ramirez-Gallego, J. Luengo, J.M. Benitez, F. Herrera, Big data preprocessing: methods and prospects, Big Data Analytics 1(1): 1–22 (2016) [Google Scholar]
  12. K.A. Whitler, Stop Focusing On Big Data And Start Focusing On Smart Data, Forbes, (2019) [Google Scholar]
  13. J. Chen, D. Dosyn, V. Lytvyn, A. Sachenko, Smart data integration by goal driven ontology learning, in INNS Conference on Big Data, Springer, 283–292 (2016) [Google Scholar]
  14. S.V. Kalinin, B.G. Sumpter, R.K. Archibald, Big-deep-smart data in imaging for guiding materials design, Nature Materials 14(10): 973–980 (2015) [Google Scholar]
  15. D. Garcia-Gil, J. Luengo, S. Garcia, F. Herrera, Enabling smart data: noise filtering in big data classification, Information Sciences, 479, 135–152 (2019) [Google Scholar]
  16. N. Roedder, D. Dauer, K. Laubis, P. Karaenke, C. Weinhardt, The digital transformation and smart data analytics: An overview of enabling developments and application areas, in IEEE International Conference on Big Data (Big Data), 27952802 (2016) [Google Scholar]
  17. M. Rakhra, R. Singh, Smart data in innovative farming, in Materials Today: Proceedings, (2021) [Google Scholar]
  18. D. Delen, S. Ram, Research challenges and opportunities in business analytics, Journal of Business Analytics 1(1): 2–12 (2018) [Google Scholar]
  19. A. Syamsryah, A. Bolt, L. Cheng, B.F. Hompes, R.J.C. Bose, B.F. van Dongen, W.M. van der Aalst, Business process comparison: A methodology and case study, in International Conference on Business Information Systems, Springer, 253–267 (2017) [Google Scholar]
  20. M. Murphy, J. Barton, From a Sea of Data to Actionable Insights, (2014) [Google Scholar]
  21. B. Dykes, Actionable insights: The missing link between data and business value, Forbes, (2016) [Google Scholar]
  22. J. Shim, R. Taylor, Purchase-Based Analytics and Big Data for Actionable Insights, IT Professional 21(5): 48–56 (2019) [Google Scholar]
  23. S. Gupta, A. Leszkiewicz, V. Kumar, T. Bijmolt, D. Potapov, Digital analytics: Modeling for insights and new methods, Journal of Interactive Marketing 51: 26–43 (2020) [Google Scholar]
  24. W. He, X. Tian, Y. Chen, D. Chong, Actionable social media competitive analytics for understanding customer experiences, Journal of Computer Information Systems 56(2): 145–155 (2016) [Google Scholar]
  25. A. Marshall, S. Mueck, R. Shockley, How leading organizations use big data and analytics to innovate, Strategy & Leadership, (2015) [Google Scholar]
  26. J. Hester, T.R. Miller, J. Gregory, R. Kirchain, Actionable insights with less data: guiding early building design decisions with streamlined probabilistic life cycle assessment, The International Journal of Life Cycle Assessment 23(10): 1903–1915 (2018) [Google Scholar]
  27. R. McCreadie, C. Buntain, I. Soboroff, Incident Streams 2019: Actionable Insights and How to Find Them, in Proceedings of the International ISCRAM Conference, (2020) [Google Scholar]
  28. A. Levenson, A. Fink, Human capital analytics: too much data and analysis, not enough models and business insights, Journal of Organizational Effectiveness: People and Performance, (2017) [Google Scholar]
  29. V.S. Sharma, R. Mehra, S. Podder, A.P. Burden, A journey towards providing intelligence and actionable insights to development teams in software delivery, in the 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), 1214–1215 (2019) [Google Scholar]
  30. T. Le Dinh, T. T. Pham Thi, Information-driven framework for collaborative business service modelling, International Journal of Service Science, Management, Engineering, and Technology (IJSSMET) 3(1): 1–18 (2012) [Google Scholar]
  31. T. Le Dinh, T. C. Phan, T. Bui, M.C. Vu, Towards a Service-Oriented architecture for knowledge management in big data era, International Journal of Intelligent Information Technologies (IJIIT) 14(4): 24–38, (2018) [Google Scholar]
  32. T. Le Dinh, T. T. Pham Thi, C. Pham-Nguyen, Towards a Context-Aware Knowledge Model for Smart Service Systems, In International Conference on Computational Collective Intelligence, Springer (2020) [Google Scholar]
  33. M. Léonard, Informational Lights from Service Science for the progression of Society (EDP Sciences, Les Ulis, 2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.