Open Access
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
Article Number 03027
Number of page(s) 6
Section Computing
Published online 09 August 2021
  1. W. Zajdel, Z. Zivkovic, and B. Krose, “Keeping track of humans: Havei seen this person before?” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 2005,pp. 2081–2086. [Google Scholar]
  2. S. karanam, M. Gou, Z. Wu, A. Rates-Borras, O. Camps and R. J. Radke, ”A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets,” in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 3, pp. 523–536, 1 March 2019, doi:10.1109/TPAMI.2018.2807450. [Google Scholar]
  3. Liang Zheng and Yi Yang and Alexander G. Hauptmann, Person Re-identification: Past,Present, Future,CoRR,abs/1610.02984,2016, [Google Scholar]
  4. Liu, Wenqian and Camps, Octavia and Sznaier, Mario. (2017). Multi-camera Multi-Object Tracking. [Google Scholar]
  5. D. Yi, Z. Lei, S. Liao and S. Z. Li, “Deep Metric Learning for Person Re-identification,” 2014 22nd International Conference on Pattern Recognition, 2014, pp. 34–39, doi: 10.1109/ICPR.2014.16. [Google Scholar]
  6. Bai, Xiang & Yang, Mingkun & Huang, Tengteng & Dou, Zhiyong & Yu, Rui & Xu, Yongchao. (2017). Deep-Person: Learning Discriminative Deep Features for Person Re-Identification. Pattern Recognition. 98. 10.1016/j.patcog.2019.107036. [Google Scholar]
  7. Kasturi R., Ekambaram R. (2014) Person Reidentification and Recognition in Video. In: Bayro- Corrochano E., Hancock E. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2014. Lecture Notes in Computer Science, vol 8827. Springer, Cham. [Google Scholar]
  8. E. Ristani and C. Tomasi, “Features for Multi-target Multi-camera Tracking and Re-identification,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 6036–6046, doi: 10.1109/CVPR.2018.00632. [Google Scholar]
  9. P. Li, M. L. Prieto, P. J. Flynn and D. Mery, “Learning face similarity for re-identification from real surveillance video: A deep metric solution,” 2017 IEEE International Joint Conference on Biometrics (IJCB), 2017, pp. 243–252, doi: 10.1109/BTAS.2017.8272704. [Google Scholar]
  10. V. Mathew, T. Toby, A. Chacko and A. Udhayakumar, “Person re-identification through face detection from videos using Deep Learning,” 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 2019, pp. 1–5, doi: 10.1109/ANTS47819.2019.9117938. [Google Scholar]
  11. Liu, Li & Ouyang, Wanli & Wang, Xiaogang & Fieguth, Paul & Chen, Jie & Liu, Xinwang & Pietikäinen, Matti. (2018). Deep Learning for Generic Object Detection: A Survey. [Google Scholar]
  12. Murat Taskiran, Nihan Kahraman, Cigdem Eroglu Erdem, Face recognition: Past, present and future (a review),Digital Signal Processing,Volume 106,2020,102809,ISSN 1051-2004, [Google Scholar]
  13. Florian Schorff, Dmitry Kalenichenko, James Phinbin,.” FaceNet: A Unified Embeddings for Face Recognition and Clustering”,2015,IEEE [Google Scholar]
  14. Kaipeng Zhang, Zhangpeng Zhang, Zhifeng Li, Joint Face Dectection and Alignment using Multi-task Cascade Convolution Networks, 2016,IEEE [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.