Open Access
ITM Web Conf.
Volume 41, 2022
International Conference on Exploring Service Science (IESS 2.2)
Article Number 05001
Number of page(s) 15
Section Digital Innovation through Smart Services
Published online 08 February 2022
  1. H. Chen, R. H. L. Chiang, V. C. Storey, Business intelligence and analytics: From big data to big impact. MIS Quarterly 36, 1165–1188 (2012) [CrossRef] [Google Scholar]
  2. K. Kesorn, W. Juraphanthong, A. Salaiwarakul, Personalized attraction recommendation system for tourists through check-in data. IEEE access 5, 26703–26721 (2017) [CrossRef] [Google Scholar]
  3. Y. Yin, L. Chen, J. Wan, Location-aware service recommendation with enhanced probabilistic matrix factorization. IEEE Access 6, 62815–62825 (2018) [CrossRef] [Google Scholar]
  4. A. Chianese, F. Piccialli, A smart system to manage the context evolution in the Cultural Heritage domain. Computers Electrical Engineering 55, 27–38 (2016) [CrossRef] [Google Scholar]
  5. C. Lim, P. P. Maglio, Data-driven understanding of smart service systems through text mining. Service Science 10(2), 154–180 (2018) [CrossRef] [Google Scholar]
  6. A. Medina-Borja, Editorial Column—Smart Things as Service Providers: A Call for Convergence of Disciplines to Build a Research Agenda for the Service Systems of the Future. Service Science 7(1), ii-v (2015) [CrossRef] [Google Scholar]
  7. D. Beverungen, M. Matzner, C. Janiesch: Information systems for smart services. In. Springer, (2017) [Google Scholar]
  8. J. C. Spohrer, H. Demirkan, Introduction to the smart service systems: Analytics, cognition, and innovation minitrack. 2015 48th Hawaii International Conference on System Sciences, (IEEE, 2015) [Google Scholar]
  9. D. T. Le, T. T. P. Thi, C. Pham-Nguyen, Towards a Context-Aware Knowledge Model for Smart Service Systems. International Conference on Computational Collective Intelligence, (Springer, 2020) [Google Scholar]
  10. J. Annas, An introduction to Plato's Republic. (1981) [Google Scholar]
  11. I. Nonaka, I. o Nonaka, N. Ikujiro, H. Takeuchi, The knowledge-creating company: How Japanese companies create the dynamics of innovation, vol. 105. OUP USA, (1995) [Google Scholar]
  12. M. Abzari, M. Shojaei, B. Forouzan, Designing of conceptual model of motivation in knowledge management implementation case study: Gas company in Isfahan province. European Journal of Economics, Finance and Administrative Sciences 45, 26–38 (2012) [Google Scholar]
  13. T. Le Dinh, L. Rinfret, L. Raymond, B. T. D. Thi, Towards the reconciliation of knowledge management and e-collaboration systems. Interactive Technology and Smart Education (2013) [Google Scholar]
  14. R. Garud, On the distinction between know-how, know-what, and know-why. Advances in strategic management 14, 81–102 (1997) [Google Scholar]
  15. T. Le Dinh, T. H. Van, T. S. Nomo, A framework for knowledge management in project management offices. The Journal of Modern Project Management 3(3) (2016) [Google Scholar]
  16. H. Cleveland, Information as a resource. Futurist 16(6), 34–39 (1982) [Google Scholar]
  17. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. Hung Byers, Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute, (2011) [Google Scholar]
  18. S. Batra, Big data analytics and its reflections on DIKW hierarchy. Review of Management 4(1/2), 5 (2014) [Google Scholar]
  19. K. C. Laszlo, A. Laszlo, Evolving knowledge for development: the role of knowledge management in a changing world. Journal of Knowledge Management (2002) [Google Scholar]
  20. J. Rowley, The wisdom hierarchy: representations of the DIKW hierarchy. Journal of information Science 33(2), 163–180 (2007) [CrossRef] [Google Scholar]
  21. P. P. Maglio, C.-H. Lim, Innovation and big data in smart service systems. Journal of Innovation Management 4(1), 11–21 (2016) [CrossRef] [Google Scholar]
  22. T. L. Dinh, N. A. K. Dam, Towards Smart Customer Knowledge Management Systems. International Conference on Computational Collective Intelligence, (Springer, 2021) [Google Scholar]
  23. C.-H. Lim, K.-J. Kim, IT-enabled information-intensive services. IT Professional 17(2), 26–32 (2015) [CrossRef] [Google Scholar]
  24. A. Intezari, S. Gressel, Information and reformation in KM systems: big data and strategic decision-making. Journal of Knowledge Management 21(1), 71–91 (2017) [CrossRef] [Google Scholar]
  25. J. R. Vest, S. J. Grannis, D. P. Haut, P. K. Halverson, N. Menachemi, Using structured and unstructured data to identify patients’ need for services that address the social determinants of health. International journal of medical informatics 107, 101–106 (2017) [CrossRef] [Google Scholar]
  26. T. Le Dinh, T.-C. Phan, T. Bui, M. C. Vu, Towards a Service-Oriented Architecture for Knowledge Management in Big Data Era. International Journal of Intelligent Information Technologies 14(4), 24–38 (2018) [CrossRef] [Google Scholar]
  27. P. Bellini, P. Nesi, M. Paolucci, I. Zaza, Smart city architecture for data ingestion and analytics: Processes and solutions. 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), (IEEE, 2018) [Google Scholar]
  28. P. Mikalef, J. Krogstie, I. O. Pappas, P. Pavlou, Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management 57(2), 103169 (2020) [CrossRef] [Google Scholar]
  29. T. Le Dinh, N. A. K. Dam, Smart data as a service. Proceedings of the International conference on exploring service science (IESS) 2.1, (2021) [Google Scholar]
  30. T. Le Dinh, T. H. Le, Towards an Approach for Modeling Interoperability of Information Systems. 2007 IEEE International Conference on Research, Innovation and Vision for the Future, (IEEE, 2007) [Google Scholar]
  31. D. T. Le, T. T. P. Thi, C. Pham-Nguyen, L. N. H. Nam, Towards a context-aware knowledge model for smart service systems. International Conference on Computational Collective Intelligence, (Springer, 2020) [Google Scholar]
  32. M. Alavi, D. E. Leidner, Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 107–136 (2001) [CrossRef] [Google Scholar]
  33. E. Begoli, J. Horey, Design principles for effective knowledge discovery from big data. 2012 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture, (IEEE, 2012) [Google Scholar]
  34. J. P. Shim, M. Warkentin, J. F. Courtney, D. J. Power, R. Sharda, C. Carlsson, Past, present, and future of decision support technology. Decision support systems 33(2), 111–126 (2002) [CrossRef] [Google Scholar]
  35. N. A. K. Dam, T. Le Dinh, W. Menvielle, Towards a Conceptual Framework for Customer Intelligence in the Era of Big Data. International Journal of Intelligent Information Technologies (IJIIT) 17(4), 1–17 (2021) [CrossRef] [Google Scholar]
  36. N. A. K. Dam, T. Le Dinh: A Literature Review of Recommender Systems for the Cultural Sector. Paper presented at the Proceedings of the 22nd International Conference on Enterprise Information, Czech Republic, [Google Scholar]
  37. J. R. Saura, D. Palacios-Marqués, D. Ribeiro-Soriano, Digital marketing in SMEs via data-driven strategies: Reviewing the current state of research. Journal of Small Business Management, 1–36 (2021) [CrossRef] [Google Scholar]
  38. J. Borràs, A. Moreno, A. Valls, Intelligent tourism recommender systems: A survey. Expert Systems with Applications 41(16), 7370–7389 (2014) [CrossRef] [Google Scholar]
  39. N. M. Villegas, C. Sánchez, J. Díaz-Cely, G. Tamura, Characterizing context-aware recommender systems: A systematic literature review. Knowledge-Based Systems 140, 173–200 (2018) [CrossRef] [Google Scholar]
  40. S. Erevelles, N. Fukawa, L. Swayne, Big Data consumer analytics and the transformation of marketing. Journal of Business Research 69(2), 897–904 (2016) [CrossRef] [Google Scholar]
  41. S. L. France, S. Ghose, Marketing analytics: Methods, practice, implementation, and links to other fields. Expert Systems with Applications 119, 456–475 (2018) [Google Scholar]
  42. A. Rawson, E. Duncan, C. Jones, The Truth About Customer Experience. Harvard Business Review (2013) [Google Scholar]
  43. N. A. K. Dam, T. Le Dinh, W. Menvielle, A Service-based Model for Customer Intelligence in the Age of Big Data. Proceedings of Americas Conference on Information Systems 9 (2020) [Google Scholar]
  44. S. Fan, R. Y. K. Lau, J. L. Zhao, Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix. Big Data Research 2(1), 28–32 (2015) [CrossRef] [Google Scholar]
  45. M. Holmlund, Y. Van Vaerenbergh, R. Ciuchita, A. Ravald, P. Sarantopoulos, F. V. Ordenes, M. Zaki, Customer experience management in the age of big data analytics: A strategic framework. Journal of Business Research (2020) [Google Scholar]
  46. D. Lafrenière, Digital transformation: start with the customer, not IT! Les Affaires (2020) [Google Scholar]
  47. T. Hong, E. Kim, Segmenting customers in online stores based on factors that affect the customer’s intention to purchase. Expert Systems with Applications 39(2), 2127–2131 (2012) [CrossRef] [Google Scholar]
  48. S. Galhotra, U. Khurana, Semantic Search over Structured Data. Proceedings of the 29th ACM International Conference on Information & Knowledge Management, (2020) [Google Scholar]
  49. N. A. K. Dam, T. Le Dinh, W. Menvielle, Marketing Intelligence From Data Mining Perspective – A Literature Review. International Journal of Innovation, Management and Technology (2019) [Google Scholar]
  50. T. Le Dinh, M. Léonard, Towards coordination-ready information systems: the Information System Component approach. Proceeding of AISTA, Luxembourg (2004) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.