Open Access
ITM Web Conf.
Volume 42, 2022
1st International Conference on Applied Computing & Smart Cities (ICACS21)
Article Number 01010
Number of page(s) 6
Published online 24 February 2022
  1. Hemlata B. Deorukhakar1, Prof. Pradnya Kasture2” Adaptive Random Decision Tree: A New Approach for Data Mining with Privacy-Preserving”, Vol. 3, Issue 7, July 2015. [Google Scholar]
  2. R. Agrawal and R. Srikant, “Privacy-Preserving Data Mining, ” Proc. ACM SIGMOD Conf. Management of Data, pp. 439-450, May 2000. [CrossRef] [Google Scholar]
  3. G. Jagannathan, K. Pillaipakkamnatt, and R.N. Wright, “A Practical Differentially Private Random Decision Tree Classifier, ” Proc. IEEE Int’l Conf. Data Mining Workshops (ICDMW ’09), pp. 114-121, 2009. [CrossRef] [Google Scholar]
  4. W. Du and Z. Zhan, “Building Decision Tree Classifier on Private Data, ”Proc. IEEE Intl Conf. Data Mining Workshop on Privacy, Security and Data Mining, pp. 1-8, Dec. 2002. [Google Scholar]
  5. G. Jaideep Vaidya, Senior Member, IEEE, Basit Shafiq, Member, IEEE, Wei Fan, Member, IEEE, Danish Mehmood, And David Lorenzi “A Random Decision Tree Framework for Privacy-Preserving Data Mining, ” Proc. IEEE Transactions On Dependable and Secure Computing, Vol. 11, No. 5, pp. 399-411, September/October 2014. [CrossRef] [Google Scholar]
  6. A. Dhurandhar and A. Dobra, “Probabilistic Characterization of Random Decision Trees, ” J. Machine Learning Research, vol. 9, pp. 2321-2348, 2008. [Google Scholar]
  7. Jintu Ann John, Neethu Maria John, “Privacy-Preserving Random Decision Trees over Randomly Partitioned Dataset”, vol.3, Issue 8, pp. 77467750, 2015. [Google Scholar]
  8. W. Fan, H. Wang, P.S. Yu, and S. Ma, “Is Random Model Better? On Its Accuracy and Efficiency, ” Proc. Third IEEE Intl Conf. Data Mining (ICDM 03), pp. 51-58, 2003. [CrossRef] [Google Scholar]
  9. Matthew N. Anyanwu and Sajjan G. Shiva, “Comparative Analysis of Serial Decision Tree Classification Algorithms, ” International Journal of Computer Science and Security, (IJCSS) Volume (3): Issue (3). [Google Scholar]
  10. Ming-Jun Xiao, Liu-Sheng Huang, Hong Shen and Yong-Long Luo, “PrivacyPreserving ID3 Algorithm over Horizontally Partitioned Data, ” Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05). [Google Scholar]
  11. Saeed Samet and Ali Miri, “Privacy-Preserving ID3 using Gini Index over Horizontally Partitioned Data, ” IEEE2008. [Google Scholar]
  12. Priyank Jain, Neelam Pathak, Pratibha Tapashetti, A.S. Umesh “Privacy-Preserving Processing of Data Decision Tree Based on Sample Selection and Singular Value Decomposition” In Proceedings the 9th International Conference on Information Assurance and Security, pp. 9195, 2013. [Google Scholar]
  13. J. Vaidya, C. Clifton, and M. Zhu, Privacy-Preserving Data Mining. Advances in Information Security first ed., vol. 19, Springer-Verlag, 2005. [Google Scholar]
  14. J. Vaidya, C. Clifton, M. Kantarcioglu, and A.S. Patterson, “Privacy-Preserving Decision Trees Over Vertically Partitioned Data, ” ACM Trans. Knowledge Discovery from Data, vol. 2, no. 3, pp. 1-27, 2008. [CrossRef] [Google Scholar]
  15. Weiwei Fang and Bingru Yang, “Privacy-Preserving Decision Tree Learning Over Vertically Partitioned Data, ” International Conference on Computer Science and Software Engineering 2008. [Google Scholar]
  16. M. Kantarcioglu and C. Clifton, “Privacy-Preserving Distributed Mining of Association Rules on Horizontally Partitioned Data, ” IEEE Trans. Knowledge and Data Eng., vol. 16, no. 9, pp. 1026-1037, Sept. 2004. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.