Open Access
Issue
ITM Web Conf.
Volume 44, 2022
International Conference on Automation, Computing and Communication 2022 (ICACC-2022)
Article Number 03069
Number of page(s) 6
Section Computing
DOI https://doi.org/10.1051/itmconf/20224403069
Published online 05 May 2022
  1. S. Albawi, T. A. Mohammed and S. Al-Zawi, “Understanding of a convolutional neural network,” 2017 International Conference on Engineering and Technology (ICET), 2017, pp. 1–6, DOI: 10.1109/ICEngTechnol.2017.8308186. [Google Scholar]
  2. Aashni Haria, Archanasri Subramanian, Nivedhitha Asokkumar, Shristi Poddar, Jyothi S. Nayak, Hand Gesture Recognition for Human Computer Interaction, Procedia Computer Science, Volume 115, 2017, Pages 367–374, ISSN 1877-0509 [CrossRef] [Google Scholar]
  3. S. M. A. Hoque, M. S. Haq and M. Hasanuzzaman, “Computer Vision Based Gesture Recognition for Desktop Object Manipulation,” 2018 International Conference on Innovation in Engineering and Technology (ICIET), 2018, pp. 1–6, DOI: 10.1109/CIET.2018.8660916. [Google Scholar]
  4. Chua, S.N.D., Chin, K.Y.R., Lim, S.F. et al. Hand Gesture Control for Human-Computer Interaction with Deep Learning. J. Electr. Eng. Technol. (2022). [Google Scholar]
  5. S. Song, D. Yan and Y. Xie, “Design of control system based on hand gesture recognition,” 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), 2018, pp. 1–4, DOI: 10.1109/ICNSC.2018.8361351. [Google Scholar]
  6. F. Brandolt Baldissera and F.L. Vargas, “A Light Implementation of a 3D Convolutional Network for Online Gesture Recognition,” in IEEE Latin America Transactions, vol. 18, no. 02, pp. 319–326, February 2020, DOI: 10.1109/TLA.2020.9085286. [CrossRef] [Google Scholar]
  7. D. Xu, Y. Chen, C. Lin, X. Kong and X. Wu, “Real-time dynamic gesture recognition system based on depth perception for robot navigation,” 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2012, pp. 689–694, DOI: 10.1109/R0BI0.2012.6491047. [CrossRef] [Google Scholar]
  8. Gavale, Sarita & Jadhav, Yogesh. (2020). HAND GESTURE DETECTION USING ARDUINO AND PYTHON FOR SCREEN CONTROL. International Journal of Engineering Applied Sciences and Technology. 5. 271–276. 10.33564/IJEAST.2020.v05i03.043. [CrossRef] [Google Scholar]
  9. Chaudhary, Ankit & Raheja, Jagdish & Das, Karen & Sonia, Raheja. (2011). Intelligent Approaches to interact with Machines using Hand Gesture Recognition in a Natural way: A Survey. International Journal of Computer Science and Engineering Survey. 2. 10.5121/ijcses.2011.2109. [Google Scholar]
  10. Rios-Soria, D.J. & Schaeffer, S.E. & Garza-Villarreal, S.E.. (2013). Hand-gesture recognition using computer-vision techniques. 1–8. [Google Scholar]
  11. H. A. Jalab and H. K. Omer, “Human computer interface using hand gesture recognition based on neural network,” 2015 5th National Symposium on Information Technology: Towards New Smart World (NSITNSW), 2015, pp. 1–6, DOI: 10.1109/NSITNSW.2015.7176391. [Google Scholar]
  12. Gupta, Aviral & Sharma, Neeta & Scholar, M. (2020). A REAL TIME CONTROLLING COMPUTER THROUGH COLOR VISION BASED TOUCHLESS MOUSE. 9. 5077. [Google Scholar]
  13. Lenman, Sören & Bretzner, Lars & Thuresson, Björn. (2012). Computer Vision Based Hand Gesture Interfaces for Human-Computer Interaction. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.