Open Access
ITM Web Conf.
Volume 45, 2022
2021 3rd International Conference on Computer Science Communication and Network Security (CSCNS2021)
Article Number 01059
Number of page(s) 7
Section Computer Technology and System Design
Published online 19 May 2022
  1. John F. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays presented to R. Courant on his 60th Birthday, pages187-204. Interscience Publishers, 1948. [Google Scholar]
  2. Gruber John and Loewner Ellipsoids. Discrete Comp. Geom., 46(4):776–788, 2011. [CrossRef] [Google Scholar]
  3. Lutwak, E., Yang, D., Zhang, G.: Lp John ellipsoids. Proc. Lond. Math. Soc. 90, 497–520 (2005) [CrossRef] [Google Scholar]
  4. D. Zou, G. Xiong, : Orlicz John ellipsoids. Adv. Math. 265, 132-168 (2014) [Google Scholar]
  5. Borel C., The Brunn-Minkowski inequality in Gauss spaces, Invent. Math. 30 (1975), 207-216. [Google Scholar]
  6. Borell C. Inequalities of the Brunn-Minkowski type for gaussian mea-sures. Probability Theory and Related Fields, 140(1-2), 2008. [Google Scholar]
  7. Borell C., Minkowski sums and Brownian exit times, Ann. Fac. Sci. Toulouse Math., to appear. [Google Scholar]
  8. Gardner R.J. Geometric tomography, volume of Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York, second edition, 2006. [Google Scholar]
  9. Gardner R.J. The Brunn-Minkowski inequality. Bull. Amer. Math. Soc. (N.S.), 39(3):355-405, 2002. [CrossRef] [MathSciNet] [Google Scholar]
  10. Maurey B. In´egalit´e de Brunn -Minkowski-Lusternik, et autres in´egalit´es g´eom´etriques et fonctionnelles. Number 299, pages Exp. No. 928, vii, 95-113. 2005. S´eminaire Bourbaki. Vol. 2003/2004. [Google Scholar]
  11. Barthe F. The Brunn-Minkowski theorem and related geometric and functional inequalities. In International Congress of Mathematicians. Vol. II, pages 1529-1546. Eur. Math. Soc., Z¨urich, 2006. [Google Scholar]
  12. Ehrhard A. Sym´etrisation dans l’espace de Gauss. Math. Scand., 53(2):281-301, 1983. [CrossRef] [MathSciNet] [Google Scholar]
  13. Gardner R.J. and Vavitch A.Z. Gaussian Brunn-Minkowski inequalities. Trans. Amer. Math. Soc., 362(10):5333-5353, 2010. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.