Open Access
Issue
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 02050
Number of page(s) 6
Section Algorithm Optimization and Application
DOI https://doi.org/10.1051/itmconf/20224702050
Published online 23 June 2022
  1. Ganti R, YE F, LEI H. Mobile crowdsensing: current state and future challenges [J]. IEEE Communications Magazine, 2011, 49(11): 32-39. [CrossRef] [Google Scholar]
  2. Guo B, CHEN C, ZHANG D, etal. Mobile crowd sensing and computing: when participatory sensing meets participatory social media [J]. IEEE Communications Magazine, 2016, 54(2): 131-137. [CrossRef] [Google Scholar]
  3. Antonić A, MARJANOVIĆ M, PRIPUŽIĆ K, etal. A mobile crowd sensing ecosystem enabled by CUPUS: Cloud-based publish/subscribe middleware for the Internet of Things [J]. Future Generation Computer Systems, 2016, 56: 607-622. [CrossRef] [Google Scholar]
  4. Crowdsensing platform: Sensarena[C]// Proceedings of the 2016 13th IEEE Annual Consumer Communications & Networking Conference. 2016: 1-2. [Google Scholar]
  5. Ben MESSAOUD R, REJIBA Z, GHAMRI-DOUDANE Y. An energy-aware end-to-end SHERCHAN W, JAYARAMAN P P, KRISHNASWAMY S, etal. Using On-the-Move Mining for Mobile Crowdsensing[C]// Proceedings of the 2012 IEEE 13th International Conference on Mobile Data Management. 2012:115-124. [Google Scholar]
  6. Mach P, BECVAR Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading [J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1628-1656. [CrossRef] [MathSciNet] [Google Scholar]
  7. Marjanovic M, ANTONIC A, ZARKO I P. Edge Computing Architecture for Mobile Crowdsensing [J]. IEEE Access, 2018, 6: 10662-10674. [CrossRef] [Google Scholar]
  8. Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. [CrossRef] [MathSciNet] [Google Scholar]
  9. Zheng Y, LIU F, HSIEH H. U-Air: when urban air quality inference meets big data[C]// Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013: 1436-1444. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.