Open Access
ITM Web Conf.
Volume 47, 2022
2022 2nd International Conference on Computer, Communication, Control, Automation and Robotics (CCCAR2022)
Article Number 03020
Number of page(s) 10
Section Control Technology and Robotics Technology
Published online 23 June 2022
  1. D L Alvarez, F F da Silva, E E Mombello, C L Bak and J A Rosero. Conductor temperature estimation and prediction at thermal transient state in dynamic line rating application IEEE Transactions on Power Delivery vol 33 no 5 pp 2236-2245 (2018) [CrossRef] [Google Scholar]
  2. N Viafora, K Morozovska, S H H Kazmi et al. Day-ahead dispatch optimization with Dynamic Thermal Rating of transformers and overhead lines Electric Power Systems Research vol 171 pp 194-208 (2019) [CrossRef] [Google Scholar]
  3. D. Douglass et al. Real-time overhead transmission-line monitoring for dynamic rating IEEE Transactions on Power Delivery vol 31 no 3 pp 921-927 (2016) [CrossRef] [Google Scholar]
  4. D M Greenwood and P C Taylor. Investigating the impact of real-time thermal ratings on power network reliability IEEE Transactions on Power Systems vol 29 no 5 pp 2460-2468 (2014) [CrossRef] [Google Scholar]
  5. R Fernandez Martinez, R Alberdi, E Fernandez, I Albizu and M T Bedialauneta. Improvement of safety operating conditions in overhead conductors based on ampacity modeling using artificial neural networks 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) pp 1-5 (2019) [Google Scholar]
  6. S Madadi, B Mohammadi-Ivatloo, S Tohidi. Dynamic line rating forecasting based on integrated factorized Ornstein–Uhlenbeck processes IEEE Transactions on Power Delivery vol 35 no 2 pp 851-860 (2020) [CrossRef] [Google Scholar]
  7. Zhiqing Wei, Mengxia Wang, Xueshan Han, Haicheng Zhang and Qiang Zhang. Probabilistic forecasting for the ampacity of overhead transmission lines using quantile regression method 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC) pp 1632-1635 (2016) [Google Scholar]
  8. J L Aznarte and N Siebert. Dynamic line rating using Numerical Weather Predictions and machine learning: a case study IEEE Transactions on Power Delivery vol 32 no 1 pp 335-343 (2017) [CrossRef] [Google Scholar]
  9. Romain Dupin, George Kariniotakis and Andrea Michiorri. Overhead lines dynamic line rating based on probabilistic day-ahead forecasting and risk assessment International Journal of Electrical Power & Energy Systems vol 110 pp 565-578 (2019) [CrossRef] [Google Scholar]
  10. IEEE standard for calculating the current-temperature relationship of bare overhead conductors IEEE Std 738-2012 (Revision of IEEE Std 738-2006 - Incorporates IEEE Std 738-2012 Cor 1-2013) pp1-72. [Google Scholar]
  11. K V Mardia. Linear-circular correlation coefficients and rhythmometry Biometrika vol 63 no 2 pp 403-405 (1976) [CrossRef] [Google Scholar]
  12. X Jin, M Wang, M Cui, H Sun and M Yang. 2021 Joint Probability Density Prediction for Multiperiod Thermal Ratings of Overhead Conductors IEEE Transactions on Power Delivery vol 36 no 5 pp 3022-3032 (2021) [CrossRef] [Google Scholar]
  13. Ming Yang, Simeng Zhu, Xueshan Han and Hongtao Wang. Joint probability density forecast for wind farm output in multi-time-interval Automation of Electric Power Systems vol 37 pp 23-28 (2013) [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.