Open Access
Issue |
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
|
|
---|---|---|
Article Number | 02006 | |
Number of page(s) | 6 | |
Section | Passive & Active Components, Circuits & Subsystems | |
DOI | https://doi.org/10.1051/itmconf/20224802006 | |
Published online | 02 September 2022 |
- E. B. Ndiaye, H. Duflo, “Non-destructive testing of sandwich composites: adhesion defects evaluation; experimental and finite element method simulation comparison”, in Acoustics 2012 Nantes, Nantes, France, 2012, p. 2659-2664. [Google Scholar]
- S. Nissabouri, M. El Allami, M. Bakhcha, “Lamb waves propagation plotting the dispersion curves”, in Conference: ICCWCS16 Volume: proceedings issn, Morocco, 2016, p. 153-156. [Google Scholar]
- B. Sinha, H. P. Valero, F. Karpfinger, A. Bakulin, B. Gurevich, “Spectral-method algorithm for modeling dispersion of acoustic modes in elastic cylindrical structures”, Geophysics 75 (2010), p. H19-H27. [Google Scholar]
- A. Nayfeh, “The general problem of elastic wave propagation in multilayered anisotropic media”, J. Acoust. Soc. Am. (1991), p. 1521-1531. [CrossRef] [Google Scholar]
- P. Hora, “Determination of Lamb wave dispersion curves using Fourier transform”, Applied and Computational Mechanics 6 (2012) 5–16. [Google Scholar]
- I. Bartoli, M. Alessandro, L. Francesco, V. Erasmo, “Modeling wave propagation in damped waveguides of arbitrary cross-section”, J. Sound Vibrat. 295 (2006), p. 685-707. [CrossRef] [Google Scholar]
- Z. A. B. Ahmad, J. M. Vivar-Perez, U. Gabbert, “Semi-analytical finite element method for modeling of lamb wave propagation”, CEAS Aeronaut. J. 4 (2013), p. 21-33. [CrossRef] [Google Scholar]
- B. Xing, Y. Zujun, X. Xining, Z. Liqiang, S. Hongmei, “Research on a rail defect location method based on a single mode extraction algorithm”, Appl. Sci. 9 (2019), p. 1-16 [Google Scholar]
- D. Wenbo, K. Ray, “Guided wave propagation in buried and immersed fluid-filled pipes: Application of the semi analytic finite element method”, Comput. Struct. 212 (2019), p. 236-247 [Google Scholar]
- E. Viola, A. Marzani, and I. Bartoli, “Semi analytical Formulation for Guided Wave Propagation” in Mechanical Vibration: Where do we Stand, vol. 488, I. Elishakoff, Ed. Vienna: Springer Vienna, 2007, pp. 105–121. [CrossRef] [Google Scholar]
- J. M. Galán and R. Abascal, “Numerical simulation of Lamb wave scattering in semi-infinite plates: Numerical simulation of Lamb wave scattering” Int. J. Numer.Methods Eng., vol. 53, no. 5, pp. 1145–1173. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.