Open Access
Issue |
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 9 | |
Section | Passive & Active Components, Circuits & Subsystems | |
DOI | https://doi.org/10.1051/itmconf/20224802008 | |
Published online | 02 September 2022 |
- D. Gidon, H. S. Abbas, A. D. Bonzanini, D. B. Graves, J. Mohammadpour Velni, and A. Mesbah, “Data-driven LPV model predictive control of a cold atmospheric plasma jet for biomaterials processing,” Control Eng. Pract., vol. 109, no. December 2020, p. 104725, 2021, doi: 10.1016/j.conengprac.2021.104725. [CrossRef] [Google Scholar]
- A. Dubuc et al., “Use of cold-atmospheric plasma in oncology: a concise systematic review,” Ther. Adv. Med. Oncol., vol. 10, pp. 1–12, 2018, doi: 10.1177/1758835918786475. [CrossRef] [Google Scholar]
- M. Laroussi, X. Lu, and M. Keidar, “Perspective: The physics, diagnostics, and applications of atmospheric pressure low temperature plasma sources used in plasma medicine,” J. Appl. Phys., vol. 122, no. 2, 2017, doi: 10.1063/1.4993710. [Google Scholar]
- M. Kehrer, J. Duchoslav, A. Hinterreiter, A. Mehic, T. Stehrer, and D. Stifter, “Surface functionalization of polypropylene using a cold atmospheric pressure plasma jet with gas water mixtures,” Surf. Coatings Technol., vol. 384, no. December 2019, p. 125170, 2020, doi: 10.1016/j.surfcoat.2019.125170. [CrossRef] [Google Scholar]
- X. Lu, M. Laroussi, and V. Puech, “On atmospheric-pressure non-equilibrium plasma jets and plasma bullets,” Plasma Sources Sci. Technol., vol. 21, no. 3, 2012, doi: 10.1088/0963-0252/21/3/034005. [MathSciNet] [Google Scholar]
- X. Xu, “Dielectric barrier discharge - Properties and applications,” Thin Solid Films, vol. 390, no. 1-2, pp. 237–242, 2001, doi: 10.1016/S0040-6090(01)00956-7. [CrossRef] [Google Scholar]
- S. Brandt, F. D. Klute, A. Schütz, and J. Franzke, “Dielectric barrier discharges applied for soft ionization and their mechanism,” Anal. Chim. Acta, vol. 951, pp. 16–31, 2017, doi: 10.1016/j.aca.2016.10.037. [CrossRef] [Google Scholar]
- J. Asenjo et al., “Atmospheric-Pressure Non-Thermal Plasma Jet for biomedical and industrial applications,” J. Phys. Conf. Ser., vol. 591, no. 1, 2015, doi: 10.1088/1742-6596/591/1/012049. [CrossRef] [Google Scholar]
- A. I. Muhammad, Q. Xiang, X. Liao, D. Liu, and T. Ding, “Understanding the Impact of Nonthermal Plasma on Food Constituents and Microstructure—A Review,” Food Bioprocess Technol., vol. 11, no. 3, pp. 463–486, 2018, doi: 10.1007/s11947-017-2042-9. [CrossRef] [Google Scholar]
- J. Y. Jeong et al., “Etching materials with an atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol., vol. 7, no. 3, pp. 282–285, 1998, doi: 10.1088/0963-0252/7/3/005. [CrossRef] [Google Scholar]
- S. E. Babayan et al., “Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet,” Plasma Sources Sci. Technol., vol. 10, no. 4, pp. 573–578, 2001, doi: 10.1088/0963-0252/10/4/305. [CrossRef] [Google Scholar]
- M. Teschke, J. Kedzierski, E. G. Finantu-Dinu, D. Korzec, and J. Engemann, “High-speed photographs of a dielectric barrier atmospheric pressure plasma jet,” IEEE Trans. Plasma Sci., vol. 33, no. 2 I, pp. 310–311, 2005, doi: 10.1109/TPS.2005.845377. [CrossRef] [Google Scholar]
- V. Horvatic, C. Vadla, and J. Franzke, “Discussion of fundamental processes in dielectric barrier discharges used for soft ionization,” Spectrochim. Acta - Part B At. Spectrosc., vol. 100, pp. 52–61, 2014, doi: 10.1016/j.sab.2014.08.010. [CrossRef] [Google Scholar]
- Q. Li, J. T. Li, W. C. Zhu, X. M. Zhu, and Y. K. Pu, “Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets,” Appl. Phys. Lett., vol. 95, no. 14, pp. 95–98, 2009, doi: 10.1063/1.3243460. [CrossRef] [Google Scholar]
- X. Lu, Z. Jiang, Q. Xiong, Z. Tang, and Y. Pan, “A single electrode room-temperature plasma jet device for biomedical applications,” Appl. Phys. Lett., vol. 92, no. 15, 2008, doi: 10.1063/1.2912524. [Google Scholar]
- J. L. Walsh and M. G. Kong, “Contrasting characteristics of linear-field and cross-field atmospheric plasma jets,” Appl. Phys. Lett., vol. 93, no. 11, pp. 1–4, 2008, doi: 10.1063/1.2982497. [Google Scholar]
- S. Dikmen, N. Şahin, Z. Dikmen, and M. Tanışlı, “Characterization of Ag-exchanged clinoptilolite treated with a plasma jet at atmospheric pressure,” Clay Miner., vol. 55, no. 3, pp. 238–247, 2020, doi: 10.1180/clm.2020.33. [CrossRef] [Google Scholar]
- A. Shashurin, M. N. Shneider, A. Dogariu, R. B. Miles, and M. Keidar, “Temporal behavior of cold atmospheric plasma jet,” Appl. Phys. Lett., vol. 94, no. 23, pp. 1–4, 2009, doi: 10.1063/1.3153143. [Google Scholar]
- V. Léveillé and S. Coulombe, “Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species,” Plasma Sources Sci. Technol., vol. 14, no. 3, pp. 467–476, 2005, doi: 10.1088/0963-0252/14/3/008. [CrossRef] [Google Scholar]
- R. Zaplotnik, M. Bišćan, Z. Kregar, U. Cvelbar, M. Mozetič, and S. Milošević, “Influence of a sample surface on single electrode atmospheric plasma jet parameters,” Spectrochim. Acta - Part B At. Spectrosc., vol. 103–104, pp. 124–130, 2015, doi: 10.1016/j.sab.2014.12.004. [Google Scholar]
- C. Jiang et al., “Single-electrode He microplasma jets driven by nanosecond voltage pulses,” J. Appl. Phys., vol. 119, no. 8, 2016, doi: 10.1063/1.4942624. [Google Scholar]
- D. Hassanpour and S. J. Pestehe, “The effects of grounded electrode geometry on RF-driven cold atmospheric pressure plasma micro-jet,” J. Theor. Appl. Phys., vol. 14, no. 4, pp. 387–398, 2020, doi: 10.1007/s40094-020-00395-0. [CrossRef] [Google Scholar]
- M. Gavrilescu, K. Demnerová, J. Aamand, S. Agathos, and F. Fava, “Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation,” N. Biotechnol., vol. 32, no. 1, pp. 147–156, 2015, doi: 10.1016/j.nbt.2014.01.001. [CrossRef] [Google Scholar]
- B. Jiang et al., “Review on electrical discharge plasma technology for wastewater remediation,” Chem. Eng. J., vol. 236, pp. 348–368, 2014, doi: 10.1016/j.cej.2013.09.090. [CrossRef] [Google Scholar]
- F. Carmen, H. Szilagyi, and A. Hegri, “Environment and Pollution Management of Pollution Volatile Organic Compounds in Cluj-Napoca,” Walter De Gruyter, vol. 10, pp. 207–217, 2016, [Online]. Available: http://archive.sciendo.com/PESD/pesd.2016.10.issue-2/pesd-2016-0038/pesd-2016-0038.pdf. [Google Scholar]
- S. Dorevitch et al., “Solar powered microplasma-generated ozone: Assessment of a novel point-of-use drinking water treatment method,” Int. J. Environ. Res. Public Health, vol. 17, no. 6, pp. 1–13, 2020, doi: 10.3390/ijerph17061858. [Google Scholar]
- N. Mohd Nasir, B. K. Lee, S. S. Yap, K. L. Thong, and S. L. Yap, “Cold plasma inactivation of chronic wound bacteria,” Arch. Biochem. Biophys., vol. 605, pp. 76–85, 2016, doi: 10.1016/j.abb.2016.03.033. [CrossRef] [Google Scholar]
- K. Kučerová, M. Henselová, Ľ. Slováková, and K. Hensel, “Effects of plasma activated water on wheat: Germination, growth parameters, photosynthetic pigments, soluble protein content, and antioxidant enzymes activity,” Plasma Process. Polym., vol. 16, no. 3, pp. 1–14, 2019, doi: 10.1002/ppap.201800131. [Google Scholar]
- A. Starek et al., “Evaluation of selected microbial and physicochemical parameters of fresh tomato juice after cold atmospheric pressure plasma treatment during refrigerated storage,” Sci. Rep., vol. 9, no. 1, pp. 1–11, 2019, doi: 10.1038/s41598-019-44946-1. [Google Scholar]
- A. G. Yahaya, T. Okuyama, J. Kristof, M. G. Blajan, and K. Shimizu, “Direct and Indirect Bactericidal Effects of Cold Atmospheric-Pressure Microplasma and Plasma Jet,” Molecules, vol. 26, pp. 13–18, 2021. [Google Scholar]
- A. J. Kenari et al., “Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells),” Bioorg. Chem., vol. 111, no. March, p. 104892, 2021, doi: 10.1016/j.bioorg.2021.104892. [CrossRef] [Google Scholar]
- J. Heinlin et al., “A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus,” J. Eur. Acad. Dermatology Venereol., vol. 27, no. 3, pp. 324–331, 2013, doi: 10.1111/j.1468-3083.2011.04395.x. [CrossRef] [Google Scholar]
- G. Isbary, T. Shimizu, J. L. Zimmermann, H. M. Thomas, G. E. Morfill, and W. Stolz, “Cold atmospheric plasma for local infection control and subsequent pain reduction in a patient with chronic post-operative ear infection,” New Microbes New Infect., vol. 1, no. 3, pp. 41–43, 2013, doi: 10.1002/2052-2975.19. [CrossRef] [Google Scholar]
- G. Daeschlein et al., “In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD),” Plasma Process. Polym., vol. 9, no. 4, pp. 380–389, 2012, doi: 10.1002/ppap.201100160. [CrossRef] [Google Scholar]
- G. Daeschlein et al., “In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet,” IEEE Trans. Plasma Sci., vol. 39, no. 2, pp. 815–821, 2011, doi: 10.1109/TPS.2010.2063441. [CrossRef] [Google Scholar]
- Z. Xiong, J. Roe, T. C. Grammer, and D. B. Graves, “Plasma Treatment of Onychomycosis,” Plasma Process. Polym., vol. 13, no. 6, pp. 588–597, 2016, doi: 10.1002/ppap.201600010. [CrossRef] [Google Scholar]
- S. R. Lipner, G. Friedman, and R. K. Scher, “Pilot study to evaluate a plasma device for the treatment of onychomycosis,” Clin. Exp. Dermatol., vol. 42, no. 3, pp. 295–298, 2017, doi: 10.1111/ced.12973. [CrossRef] [Google Scholar]
- M. S. H. C. Korting, “The pH of the Skin Surface and Its Impact on the Barrier Function,” pp. 296–302, 2006, doi: 10.1159/000094670. [Google Scholar]
- H. Öhman and A. Vahlquist, “The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis; a clue to the molecular origin of the ‘acid skin mantle’?,” J. Invest. Dermatol., vol. 111, pp. 674–677, 1998. [CrossRef] [Google Scholar]
- C. M. Stewart, M. B. Cole, J. D. Legan, L. Slade, M. H. Vandeven, and D. W. Schaffner, “Staphylococcus aureus growth boundaries: Moving towards mechanistic predictive models based on solute-specific effects,” Appl. Environ. Microbiol., vol. 68, no. 4, pp. 1864–1871, 2002, doi: 10.1128/AEM.68.4.1864-1871.2002. [CrossRef] [Google Scholar]
- A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Vioel, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys., vol. 11, 2009, doi: 10.1088/1367-2630/11/11/115025. [Google Scholar]
- S. Vandersee et al., “Laser scanning microscopy as a means to assess the augmentation of tissue repair by exposition of wounds to tissue tolerable plasma,” Laser Phys. Lett., vol. 11, no. 11, 2014, doi: 10.1088/1612-2011/11/11/115701. [CrossRef] [Google Scholar]
- H. R. Metelmann et al., “Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation,” Clin. Plasma Med., vol. 1, no. 1, pp. 30–35, 2013, doi: 10.1016/j.cpme.2012.12.001. [CrossRef] [Google Scholar]
- C. Chutsirimongkol, D. Boonyawan, N. Polnikorn, W. Techawatthanawisan, and T. Kundilokchai, “Non-thermal plasma for acne treatment and aesthetic skin improvement,” Plasma Med., vol. 4, no. 1-4, pp. 79–88, 2014, doi: 10.1615/PlasmaMed.2014011952. [CrossRef] [Google Scholar]
- U. Shah et al., “Effects of cold plasma treatments on spot-inoculated Escherichia coli O157:H7 and quality of baby kale (Brassica oleracea) leaves,” Innov. Food Sci. Emerg. Technol., vol. 57, no. November 2018, p. 102104, 2019, doi: 10.1016/j.ifset.2018.12.010. [CrossRef] [Google Scholar]
- M. Gavahian and P. J. Cullen, “Cold Plasma as an Emerging Technique for Mycotoxin-Free Food: Efficacy, Mechanisms, and Trends,” Food Rev. Int., vol. 36, no. 2, pp. 193–214, 2020, doi: 10.1080/87559129.2019.1630638. [CrossRef] [Google Scholar]
- C. Smet et al., “Combined effect of cold atmospheric plasma, intrinsic and extrinsic factors on the microbial behavior in/on (food) model systems during storage,” Innov. Food Sci. Emerg. Technol., vol. 53, no. June 2017, pp. 3–17, 2019, doi: 10.1016/j.ifset.2018.05.016. [CrossRef] [Google Scholar]
- M. Umair, S. Jabbar, M. M. Nasiru, A. M. Senan, H. Zhuang, and J. Zhang, “Sequential Application of High-Voltage Electric Field Cold Plasma Treatment and Acid Blanching Improves the Quality of Fresh Carrot Juice (Daucus carota L.),” J. Agric. Food Chem., vol. 68, no. 51, pp. 15311–15318, 2020, doi: 10.1021/acs.jafc.0c03470. [CrossRef] [Google Scholar]
- M. Umair et al., “Recent Advances in Plasma Technology: Influence of Atmospheric Cold Plasma on Spore Inactivation,” Food Rev. Int., vol. 00, no. 00, pp. 1–23, 2021, doi: 10.1080/87559129.2021.1888972. [CrossRef] [Google Scholar]
- R. Laurita, D. Barbieri, M. Gherardi, V. Colombo, and P. Lukes, “Chemical analysis of reactive species and antimicrobial activity of water treated by nanosecond pulsed DBD air plasma,” Clin. Plasma Med., vol. 3, no. 2, pp. 53–61, 2015, doi: 10.1016/j.cpme.2015.10.001. [CrossRef] [Google Scholar]
- V. Scholtz, J. Pazlarova, H. Souskova, J. Khun, and J. Julak, “Nonthermal plasma - A tool for decontamination and disinfection,” Biotechnol. Adv., vol. 33, no. 6, pp. 1108–1119, 2015, doi: 10.1016/j.biotechadv.2015.01.002. [CrossRef] [Google Scholar]
- J. A. Buendia, E. Perez-Lopez, and A. Venkattraman, “System-level model and experiments for irrigation water alkalinity reduction and enrichment using an atmospheric pressure dielectric barrier discharge,” Water Res., vol. 144, pp. 728–739, 2018, doi: 10.1016/j.watres.2018.07.073. [CrossRef] [Google Scholar]
- R. Brandenburg, “Corrigendum: Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments (Plasma Sources Science and Technology (2017) 26 (053001) DOI: 10.1088/1361-6595/aa6426),” Plasma Sources Sci. Technol., vol. 27, no. 7, 2018, doi: 10.1088/1361-6595/aaced9. [Google Scholar]
- I. V. Adamovich and W. R. Lempert, “Challenges in understanding and predictive model development of plasma-assisted combustion,” Plasma Phys. Control. Fusion, vol. 57, no. 1, p. 14001, 2015, doi: 10.1088/0741-3335/57/1/014001. [CrossRef] [Google Scholar]
- M. Simeni Simeni, Y. Tang, Y. C. Hung, Z. Eckert, K. Frederickson, and I. V. Adamovich, “Electric field in Ns pulse and AC electric discharges in a hydrogen diffusion flame,” Combust. Flame, vol. 197, pp. 254–264, 2018, doi: 10.1016/j.combustflame.2018.08.004. [CrossRef] [Google Scholar]
- T. Ono, T. Segawa, N. Saito, E. Takahashi, and M. Nishioka, “Effect of long-lived species generated by non-thermal plasmas on the auto-ignition delay of liquid Hydrocarbon fuel-air pre-mixtures,” Combust. Sci. Technol., vol. 189, no. 9, pp. 1624–1638, 2017, doi: 10.1080/00102202.2017.1318856. [CrossRef] [Google Scholar]
- S. Nagaraja, V. Yang, Z. Yin, and I. Adamovich, “Ignition of hydrogen-air mixtures using pulsed nanosecond dielectric barrier plasma discharges in plane-to-plane geometry,” Combust. Flame, vol. 161, no. 4, pp. 1026–1037, 2014, doi: 10.1016/j.combustflame.2013.10.007. [CrossRef] [Google Scholar]
- M. G. De Giorgi, A. Ficarella, A. Sciolti, E. Pescini, S. Campilongo, and G. Di Lecce, “Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators,” Energy, vol. 126, pp. 689–706, 2017, doi: 10.1016/j.energy.2017.03.048. [CrossRef] [Google Scholar]
- P. Svarnas, A. Spiliopoulou, P. Koutsoukos, K. Gazeli, and E. Anastassiou, “Acinetobacter baumannii Deactivation by Means of DBD-Based Helium Plasma Jet,” Plasma, vol. 2, no. 2, pp. 77–90, 2019, doi: 10.3390/plasma2020008. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.