Open Access
Issue
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
Article Number 02009
Number of page(s) 7
Section Passive & Active Components, Circuits & Subsystems
DOI https://doi.org/10.1051/itmconf/20224802009
Published online 02 September 2022
  1. J. D. Achenbach, Wave propagation in elastic solids. Amsterdam, New York: North-Holland Pub. Co.; American Elsevier Pub. Co, 1973. [Google Scholar]
  2. K. Worden, “Rayleigh and Lamb Waves – Basic Principles,” Strain, vol. 37, no. 4, pp. 167–172, Nov. 2001, doi: 10.1111/j.1475-1305.2001.tb01254.x. [CrossRef] [Google Scholar]
  3. J. L. Rose, Ultrasonic Guided Waves in Solid Media. New York: Cambridge University Press, 2014. doi: 10.1017/CBO9781107273610. [CrossRef] [Google Scholar]
  4. M. J. S. Lowe, “Matrix techniques for modeling ultrasonic waves in multilayered media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, no. 4, pp. 525–542, Jul. 1995, doi: 10.1109/58.393096. [CrossRef] [Google Scholar]
  5. B. Pavlakovic, M. Lowe, D. Alleyne, and P. Cawley, “Disperse: A General Purpose Program for Creating Dispersion Curves,” in Review of Progress in Quantitative Nondestructive Eds. Boston, MA: Springer US, 1997, pp. 185–192. doi: 10.1007/978-1-4615-5947-4_24. [CrossRef] [Google Scholar]
  6. S. Nissabouri, M. El Allami, and E. H. Boutyour, “Quantitative evaluation of semi-analytical finite element method for modeling Lamb waves in orthotropic plates,” Comptes Rendus Mécanique, vol. 348, no. 5, pp. 335–350, Nov. 2020, doi: 10.5802/crmeca.13. [CrossRef] [Google Scholar]
  7. Z. A. B. Ahmad, J. M. Vivar-Perez, and U. Gabbert, “Semi-analytical finite element method for modeling of lamb wave propagation,” CEAS Aeronaut. J., vol. 4, no. 1, pp. 21–33, Apr. 2013, doi: 10.1007/s13272-012-0056-6. [CrossRef] [Google Scholar]
  8. I. Bartoli, A. Marzani, and H. Matt, “Modeling Guided Wave Propagation for Structural Health Monitoring Applications,” p. 9, 2006. [Google Scholar]
  9. W. Duan and R. Kirby, “Guided wave propagation in buried and immersed fluid-filled pipes: Application of the semi analytic finite element method,” Comput. Struct., vol. 212, pp. 236–247, Feb. 2019, doi: 10.1016/j.compstruc.2018.10.020. [CrossRef] [Google Scholar]
  10. T. Hayashi, W.-J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example,” Ultrasonics, vol. 41, no. 3, pp. 175–183, May 2003, doi: 10.1016/S0041-624X(03)00097-0. [CrossRef] [Google Scholar]
  11. L. Gavrić, “Computation of propagative waves in free rail using a finite element technique,” J. Sound Vib., vol. 185, no. 3, pp. 531–543, Aug. 1995, doi: 10.1006/jsvi.1995.0398. [CrossRef] [Google Scholar]
  12. A. Marzani, I. Bartoli, E. Viola, and F. L. di Scalea, “Finite element based technique for modeling propagative stress waves in axisymmetric viscoelastic waveguides,” p. 5. [Google Scholar]
  13. I. I. Setshedi, P. W. Loveday, C. S. Long, and D. N. Wilke, “Estimation of rail properties using semi-analytical finite element models and guided wave ultrasound measurements,” Ultrasonics, vol. 96, pp. 240–252, Jul. 2019, doi: 10.1016/j.ultras.2018.12.015. [CrossRef] [Google Scholar]
  14. E. Viola, A. Marzani, and I. Bartoli, “Semianalytical Formulation for Guided Wave Propagation,” in Mechanical Vibration: Where do we Stand?, vol. 488, I. Elishakoff, Ed. Vienna: Springer Vienna, 2007, pp. 105–121. doi: 10.1007/978-3-211-70963-4_6. [CrossRef] [Google Scholar]
  15. A. Marzani, E. Viola, P. Bocchini, I. Bartoli, S. Coccia, and S. Salamone, “A SOFTWARE FOR THE COMPUTATION OF ACOUSTIC WAVES IN CYLINDRICAL, PLATE AND ARBITRARY CROSS-SECTION WAVEGUIDES,” p. 10. [Google Scholar]
  16. Asrar Bin Ahmad, “Numerical Simulations of Lamb Waves in Plates Using a Semi-Analytical Finite Element Method,” 2011. [Google Scholar]
  17. Z. A. B. Ahmad, J. M. Vivar-Perez, and U. Gabbert, “Semi-analytical finite element method for modeling of lamb wave propagation,” CEAS Aeronaut. J., vol. 4, no. 1, pp. 21–33, Apr. 2013, doi: 10.1007/s13272-012-0056-6. [CrossRef] [Google Scholar]
  18. T. Hayashi and D. Inoue, “Calculation of leaky Lamb waves with a semi-analytical finite element method,” Ultrasonics, vol. 54, no. 6, p [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.