Open Access
Issue
ITM Web Conf.
Volume 48, 2022
The 4th International Conference on Computing and Wireless Communication Systems (ICCWCS 2022)
Article Number 03001
Number of page(s) 5
Section Computer Science, Intelligent Systems and Information Technologies
DOI https://doi.org/10.1051/itmconf/20224803001
Published online 02 September 2022
  1. Q. Shambour, M. Hourani, S. Fraihat, An itembased multi-criteria collaborative filtering algorithm for personalized recommender systems, International Journal of Advanced Computer Science and Applications, 7(8), 274-279 (2016). [Google Scholar]
  2. M. E. B. H. Kbaier, H. Masri, S. Krichen, A personalized hybrid tourism recommender system, In 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 244-250 (2017). [Google Scholar]
  3. M. Nilashi, A. Ahani, M. D. Esfahani, E. Yadegaridehkordi, S. Samad, O. Ibrahim, E. Akbari, Preference learning for eco-friendly hotels recommendation: A multi-criteria collaborative filtering approach, Journal of Cleaner Production, 215, 767-783 (2019). [CrossRef] [Google Scholar]
  4. A. Valdivia, M. V. Luzón, F. Herrera, Sentiment analysis in tripadvisor, IEEE Intelligent Systems, 32(4), 72-77 (2017). [CrossRef] [Google Scholar]
  5. V. Taecharungroj, B. Mathayomchan, Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand, Tourism Management, 75, 550-568 (2019). [Google Scholar]
  6. N. Z. Dina, Tourist sentiment analysis on TripAdvisor using text mining: A case study using hotels in Ubud, Bali, African Journal of Hospitality, Tourism and Leisure, 9(2), 1-10 (2020). [Google Scholar]
  7. Z. Abbasi-Moud, H. Vahdat-Nejad, J. Sadri, Tourism recommendation system based on semantic clustering and sentiment analysis, Expert Systems with Applications, 167, 114324 (2021). [Google Scholar]
  8. Z. Abbasi-Moud, H. Vahdat-Nejad, J. Sadri, Tourism recommendation system based on semantic clustering and sentiment analysis, Expert Systems with Applications, 167, 114324 (2021). [Google Scholar]
  9. Y. Su, X. Li, W. Tang, J. Xiang, Y. He, Next check-in location prediction via footprints and friendship on location-based social networks, In 2018 19th IEEE International Conference on Mobile Data Management (MDM), 251-256 (2018). [CrossRef] [Google Scholar]
  10. T. Arreeras, M. Arimura, T. Asada, S. Arreeras, Association rule mining tourist-attractive destinations for the sustainable development of a large tourism area in Hokkaido using Wi-Fi tracking data, Sustainability, 11(14), 3967 (2019). [Google Scholar]
  11. C. Bin, T. Gu, Y. Sun, L. Chang, L. Sun, A travel route recommendation system based on smart phones and IoT environment, Wireless Communications and Mobile Computing (2019). [Google Scholar]
  12. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation, 9(8), 1735-1780 (1997). [Google Scholar]
  13. F. A. Gers, J. Schmidhuber, F. Cummins, Learning to forget: Continual prediction with LSTM, Neural computation, 12(10), 2451-2471 (2000). [Google Scholar]
  14. R. A. Horn, The hadamard product. In Proc. Symp. Appl. Math, 40, 87-169 (1990). [CrossRef] [Google Scholar]
  15. A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and other neural network architectures, Neural networks, 18(5-6), 602-610 (2005). [Google Scholar]
  16. Z. Huang, W. Xu, K. Yu, Bidirectional LSTMCRF models for sequence tagging, arXiv preprint arXiv:1508.01991 (2015). [Google Scholar]
  17. R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in Proceedings of 20th international conference very large data bases, VLDB, 1215, 487-499 (1994). [Google Scholar]
  18. M. Al-Maolegi, B. Arkok, An improved Apriori algorithm for association rules, arXiv preprint arXiv:1403.3948 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.