Open Access
ITM Web Conf.
Volume 49, 2022
International Conference on Applied Mathematics and Numerical Methods – fourth edition (ICAMNM 2022)
Article Number 01007
Number of page(s) 13
Section Applied Mathematics
Published online 16 November 2022
  1. Hyormander L. Linear Partial Differential Operators. Springer-Verlag Berlin Heidelberg, 1969. [Google Scholar]
  2. Nikolsky S. M. The First boundary-value problem for a general linear equation, Dokl. Akad. Nauk SSSR, 146, 4, 767-769, (1962) (in Russian). [MathSciNet] [Google Scholar]
  3. Mikhailov V. P. Behavior at infinity of a certain class of polynomials. Proc. Steklov Inst. Math. 91, 61–82 (1967). [Google Scholar]
  4. Friberg J. Multi-quasi-elliptic polynomials, Ann. Scuola Norm. Sup. Pisa C1. Sc. 21, 239-260 (1967). [MathSciNet] [Google Scholar]
  5. Volevich L. R., Gindikin S. G. The Method of Newtons Polyhedron in the Theory of Partial Differential Equations. Math. Appl. V. 86. Dordrecht, Kluwer Academic, 1992. [Google Scholar]
  6. Ghazaryan H. G. Estimates of differential operators, and hypoelliptic operators. Trudy Mat. Inst. Steklov 140, 130–161 (1976). [MathSciNet] [Google Scholar]
  7. Ghazaryan H. G. The Newton polyhedron, spaces of differentiable functions and general theory of differential equations. Armenian Journal of Mathematics 9, 2, 102–145 (2017). [MathSciNet] [Google Scholar]
  8. McOwen R. C. On elliptic operators in Rn, Communications in Partial Differential Equations 5, 8, 913–933 (1980). [CrossRef] [Google Scholar]
  9. Lockhart R. B., McOwen R. C. On elliptic systems in Rn. Acta Math 150, 125–135 (1983). [CrossRef] [MathSciNet] [Google Scholar]
  10. Bagirov L. A. Elliptic operators in unbounded domain. Sbornik: Mathematics 86, 1, 122–139 (1971) (in Russian). [MathSciNet] [Google Scholar]
  11. Schrohe E. Spectral invariance, ellipticity, and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces. Annals of Global Analysis and Geometry 10, 3, 237–254 (1992). [CrossRef] [MathSciNet] [Google Scholar]
  12. Bagirov L. A. A priori estimates, existence theorems, and the behavior at infinity of solutions of quasielliptic equations in Rn. Sbornik: Mathematics 110, 4, 475–492 (1979). [MathSciNet] [Google Scholar]
  13. Karapetyan G. A., Darbinyan A. A. Index of semi-elliptic operator in Rn. Proceedings of the NAS Armenia: Mathematics 42, 5, 33–50 (2007). [MathSciNet] [Google Scholar]
  14. Demidenko G. V. On quasielliptic operators in Rn. Siberian Mathematical Journal 39, 5, 1028–1037 (1998). [MathSciNet] [Google Scholar]
  15. Demidenko G. V. Quasielliptic operators and Sobolev type equations. Siberian Mathematical Journal 49, 5, 842–851 (2008). [CrossRef] [MathSciNet] [Google Scholar]
  16. Tumanyan A. G. On the invariance of index of semielliptical operator on the scale of anisotropic spaces. Journal of Contemporary Mathematical Analysis 51, 4, 167–178 (2016). [Google Scholar]
  17. Darbinyan A. A., Tumanyan A. G. On index stability of Noetherian differential operators in anisotropic Sobolev spaces. Eurasian Mathematical Journal. 10, 1, 9-15 (2019). [CrossRef] [MathSciNet] [Google Scholar]
  18. Tumanyan A. G. On the Fredholm property of semielliptic operators in anisotropic weighted spaces in Rn. Journal of Contemporary Mathematical Analysis 56, 3, 168-181 (2021). [CrossRef] [Google Scholar]
  19. Boggiatto P., Buzano E., Rodino L. Multi-quasi-elliptic operators in Rn. Partial Differential Operators and Mathematical Physics, Proceedings Holzau, 31–42 (1995). [MathSciNet] [Google Scholar]
  20. Tumanyan A. G. Fredholm criteria for a class of regular hypoelliptic operators in multianisotropic spaces in Rn. Italian Journal of Pure and Applied Mathematics 48, 1009–1028 (2022). [Google Scholar]
  21. Edmunds D. E., Evans W. D. Spectral theory and differential operators. Oxford University Press, Oxford, 1987. [Google Scholar]
  22. Kreyn S. G. Linear operators in Banach spaces. Nauka, Moscow, 1971 (in Russian). [Google Scholar]
  23. Pehkonen E. Ein hypoelliptisches Diriclet Problem.Com.Mat.Phys. 48, 3, 131–143 (1978). [MathSciNet] [Google Scholar]
  24. Kutateladze S. S. Fundamentals of Functional Analysis. Kluwer Texts in the Mathematical Sciences. V. 12. Dordrecht: Kluwer Academic Publishers Group, 1996. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.