Open Access
ITM Web Conf.
Volume 53, 2023
2nd International Conference on Data Science and Intelligent Applications (ICDSIA-2023)
Article Number 01002
Number of page(s) 19
Section Artificial Intelligence
Published online 01 June 2023
  1. Epilepsy Fact Sheet., (2018) [Google Scholar]
  2. Acharya, U. R., Sree, S. V., Swapna, G., Martis, R. J., & Suri, J. S. (2013). Automated EEG analysis of epilepsy: a review. Knowledge-Based Systems, 45, 147-165. [CrossRef] [Google Scholar]
  3. Puce, Aina, and Matti S. Hämäläinen. “A review of issues related to data acquisition and analysis in EEG/MEG studies.” Brain sciences 7, no. 6 (2017): 58. [CrossRef] [Google Scholar]
  4. Joshi, Varun, Ram Bilas Pachori, and Antony Vijesh. “Classification of ictal and seizure-free EEG signals using fractional linear prediction.” Biomedical Signal Processing and Control 9 (2014): 1-5. [CrossRef] [Google Scholar]
  5. Ghaderyan, Peyvand, Ataollah Abbasi, and Mohammad Hossein Sedaaghi. “An efficient seizure prediction method using KNN-based undersampling and linear frequency measures.” Journal of neuroscience methods 232 (2014): 134-142. [CrossRef] [Google Scholar]
  6. Pachori, Ram Bilas, and Shivnarayan Patidar. “Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions.” Computer methods and programs in biomedicine 113, no. 2 (2014): 494-502. [CrossRef] [Google Scholar]
  7. Hassan, Ahnaf Rashik, and Abdulhamit Subasi. “Automatic identification of epileptic seizures from EEG signals using linear programming boosting.” computer methods and programs in biomedicine 136 (2016): 65-77. [CrossRef] [Google Scholar]
  8. Sharma, Manish, Abhinav Dhere, Ram Bilas Pachori, and U. Rajendra Acharya. “An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks.” Knowledge-Based Systems 118 (2017): 217-227. [CrossRef] [Google Scholar]
  9. Faust, Oliver, U. Rajendra Acharya, Hojjat Adeli, and Amir Adeli. “Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis.” Seizure 26 (2015): 56-64. [CrossRef] [Google Scholar]
  10. Kumar, Yatindra, Mohan Lal Dewal, and Radhey Shyam Anand. “Relative wavelet energy and wavelet entropy based epileptic brain signals classification.” Biomedical Engineering Letters 2 (2012): 147-157. [CrossRef] [Google Scholar]
  11. Sharma, Rajeev, and Ram Bilas Pachori. “Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions.” Expert Systems with Applications 42, no. 3 (2015): 1106-1117. [Google Scholar]
  12. Bajaj, Varun, and Ram Bilas Pachori. “Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals.” Biomedical Engineering Letters 3 (2013): 17-21. [CrossRef] [Google Scholar]
  13. Kaya, Yılmaz, Murat Uyar, Ramazan Tekin, and Selçuk Yıldırım. “1D-local binary pattern based feature extraction for classification of epileptic EEG signals.” Applied Mathematics and Computation 243 (2014): 209-219. [CrossRef] [MathSciNet] [Google Scholar]
  14. Kumar, T. Sunil, Vivek Kanhangad, and Ram Bilas Pachori. “Classification of seizure and seizure-free EEG signals using local binary patterns.” Biomedical Signal Processing and Control 15 (2015): 33-40. [CrossRef] [Google Scholar]
  15. Mursalin, Md, Yuan Zhang, Yuehui Chen, and Nitesh V. Chawla. “Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier.” Neurocomputing 241 (2017): 204-214. [CrossRef] [Google Scholar]
  16. Wang, Lina, Weining Xue, Yang Li, Meilin Luo, Jie Huang, Weigang Cui, and Chao Huang. “Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis.” Entropy 19, no. 6 (2017): 222. [CrossRef] [Google Scholar]
  17. Yuan, Qi, Weidong Zhou, Liren Zhang, Fan Zhang, Fangzhou Xu, Yan Leng, Dongmei Wei, and Meina Chen. “Epileptic seizure detection based on imbalanced classification and wavelet packet transform.” Seizure 50 (2017): 99-108. [CrossRef] [Google Scholar]
  18. Lahmiri, Salim. “Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients.” Physica A: Statistical Mechanics and its Applications 490 (2018): 378-385. [CrossRef] [Google Scholar]
  19. Acharya, U. Rajendra, Filippo Molinari, S. Vinitha Sree, Subhagata Chattopadhyay, Kwan-Hoong Ng, and Jasjit S. Suri. “Automated diagnosis of epileptic EEG using entropies.” Biomedical Signal Processing and Control 7, no. 4 (2012): 401-408. [CrossRef] [Google Scholar]
  20. Dhiman, Rohtash, and J. S. Saini. “Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures.” Applied Soft Computing 19 (2014): 8-17. [CrossRef] [Google Scholar]
  21. Hassan, Ahnaf Rashik, Siuly Siuly, and Yanchun Zhang. “Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating.” Computer methods and programs in biomedicine 137 (2016): 247-259. [CrossRef] [Google Scholar]
  22. Patidar, Shivnarayan, and Trilochan Panigrahi. “Detection of epileptic seizure using Kraskov entropy applied on tunable-Q wavelet transform of EEG signals.” Biomedical Signal Processing and Control 34 (2017): 74-80. [CrossRef] [Google Scholar]
  23. Jia, Jian, Balaji Goparaju, JiangLing Song, Rui Zhang, and M. Brandon Westover. “Automated identification of epileptic seizures in EEG signals based on phase space representation and statistical features in the CEEMD domain.” Biomedical Signal Processing and Control 38 (2017): 148-157. [CrossRef] [Google Scholar]
  24. Gandhi, Tapan, Bijay Ketan Panigrahi, and Sneh Anand. “A comparative studyof wavelet families for EEG signal classification.” Neurocomputing 74, no. 17 (2011): 3051-3057. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.