Open Access
Issue
ITM Web Conf.
Volume 54, 2023
2nd International Conference on Advances in Computing, Communication and Security (I3CS-2023)
Article Number 03002
Number of page(s) 8
Section Security
DOI https://doi.org/10.1051/itmconf/20235403002
Published online 04 July 2023
  1. Pan, Ya, X. Ge, C. Fang, Y. Fan. A systematic literature review of android malware detection using static analysis. IEEE Access 8, 116363–116379 (2020). [CrossRef] [Google Scholar]
  2. Amin, M. Rakib, M. Zaman, M.S. Hossain, M. Atiquzzaman. Behavioral malware detection approaches for Android. In 2016 IEEE International Conference on Communications (ICC), IEEE, pp. 1–6 (2016). [Google Scholar]
  3. Chess, Brian, and G. McGraw. Static analysis for security. IEEE Sec. & Prvcy 2, 76 (2004). [Google Scholar]
  4. Wang, Haoyu, J. Si, H. Li, Y. Guo, Rmvdroid: towards a reliable android malware dataset with app metadata In IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), 404 (2019). [CrossRef] [Google Scholar]
  5. Wei, Fengguo, Y. Li, S. Roy, X. Ou, W. Zhou, Deep ground truth analysis of current android malware, in International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, Springer, Cham, 252 (2017). [Google Scholar]
  6. Arp, Daniel, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C.E.R.T., Drebin: Effective and explainable detection of android malware in your pocket Ndss, 23 (2014). [Google Scholar]
  7. HCRL, Datasets for malware/malicious app analysis. https://ocslab.hksecurity.net/Datasets (accessed February, 05 2023). [Google Scholar]
  8. Kiss, Nicolas, J.F. Lalande, M. Leslous, V.V.T. Triem Tong, Kharon dataset: Android malware under a microscope, in The LASER Workshop: Learning from Authoritative Security Experiment Results, LASER, 1 (2016). [Google Scholar]
  9. A.H. Lashkari, A. Fitriah A. Kadir, H. Gonzalez, K.F. Mbah, A.A. Ghorbani, Towards a Network-Based Framework for Android Malware Detection and Characterization, in the proceeding of the 15 th International Conference on Privacy, Security and T rust, P ST, Calgary, Canada (2017). [Google Scholar]
  10. A.G. Manzanares, Alejandro, H. Bahsi, S. Nômm. KronoDroid: Timebased hybrid- featured dataset for effective android malware detection and characterization, Comp. & Sec. 110 (2021). [Google Scholar]
  11. S. Mahdavifar, A.F.A. Kadir, R. Fatemi, D. Alhadidi, A.A. Ghorbani, Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning, in the 18th IEEE International Conference on Dependable, Autonomic, and Secure Computing (DASC), 17 (2020). [Google Scholar]
  12. A.H. Lashkari, A.F.A. Kadir, L. Taheri, A.A. Ghorbani, Toward Developing a Systematic Approach to Generate Benchmark Android Malware Datasets and Classification, in the proceedings of the 52nd IEEE International Carnahan Conference on Security Technology (ICCST), Montreal, Quebec, Canada, (2018). [Google Scholar]
  13. A. Rahali, A.H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, F. Massicotte, DIDroid: Android Malware Classification and Characterization Using Deep Image Learning, 10th International Conference on Communication and Network Security (ICCNS2020), Tokyo, Japan, 70 (2020). [Google Scholar]
  14. M. Parkour, Contagio Malware Dump. https://contagiodump.blogspot.com (accessed February, 05 2023). [Google Scholar]
  15. Allix, Kevin, T.F. Bissyandé, J. Klein, Y.L. Traon, Androzoo: Collecting millions of android apps for the research community, In IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR), 468 (2016). [Google Scholar]
  16. Zhou, Yajin, X. Jiang, Dissecting android malware: Characterization and evolution in IEEE symposium on security and privacy, 95 (2012). [Google Scholar]
  17. Maiorca, Davide, D. Ariu, I. Corona, M. Aresu, G. Giacinto, Stealth attacks: An extended insight into the obfuscation effects on android malware, Comp. & Sec. 51, 16 (2015). [CrossRef] [Google Scholar]
  18. Irolla, Paul, A. Dey, The duplication issue within the drebin dataset, Jour. of Comp. Vir.. and Hac. Tech. 14, 245 (2018). [CrossRef] [Google Scholar]
  19. Rafiq, Husnain, N. Aslam, M. Aleem, B. Issac, R.H. Randhawa, AndroMalPack: enhancing the ML-based malware classification by detection and removal of repacked apps for Android systems, Sci. Rep. 12, 1 (2022). [CrossRef] [Google Scholar]
  20. Google Play. https://play.google.com (accessed February, 05 2023). [Google Scholar]
  21. APKPure, https://m.apkpure.com (accessed February, 05 2023). [Google Scholar]
  22. Nils Kuhnert, VirusShare.com. https://virusshare.com (accessed February, 05 2023). [Google Scholar]
  23. McAfee: Cyber criminals using Android malware and ransomware the most (2013), https://www.infoworld.com/article/2614854/update--mcafee--cyber-criminals-using-android-malware-and-ransomware-the-most.html (accessed February, 05 2023). [Google Scholar]
  24. Comodo, https://www.comodo.com/home/internet-security/security-software.php (accessed February, 05 2023). [Google Scholar]
  25. L. Li, D. Li, T.F. Bissyandé, J. Klein, Y.L. Traon, D. Lo, L. Cavallaro, Understanding android app piggybacking: a systematic study of malicious code grafting, IEEE Trans. Inf. Forensics Sec. 12, 1269 (2017). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.