Open Access
ITM Web Conf.
Volume 56, 2023
First International Conference on Data Science and Advanced Computing (ICDSAC 2023)
Article Number 04009
Number of page(s) 14
Section Language & Image Processing
Published online 09 August 2023
  1. Al-Qaraghuli, M. (2021). Correcting Arabic Soft Spelling Mistakes Using Transformers. 146-151. [Google Scholar]
  2. Antoun, W., Baly, F., & Hajj, H. (2020). AraBERT: Transformer-based Model for Arabic Language Understanding. ArXiv, May, 9-15. [Google Scholar]
  3. Chouikhi, H., & Alsuhaibani, M. (2022). Deep Transformer Language Models for Arabic Text Summarization: A Comparison Study. Applied Sciences (Switzerland), 12(23). [Google Scholar]
  4. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019-2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1(Mlm), 4171-4186. [Google Scholar]
  5. Ethnologue. Arabic language statistics, 2020. [Google Scholar]
  6. Karita, S., Wang, X., Watanabe, S., Yoshimura, T., Zhang, W., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, N. E. Y., & Yamamoto, R. (2019). A Comparative Study on Transformer vs RNN in Speech Applications. 2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Proceedings, 9(4), 449-456. [Google Scholar]
  7. Madi, N., & Al-Khalifa, H. (2020). Error detection for Arabic text using neural sequence labeling. Applied Sciences (Switzerland), 10(15), 1-14. [Google Scholar]
  8. Madi, N., & Al-Khalifa, H. S. (2018). A Proposed Arabic Grammatical Error Detection Tool Based on Deep Learning. Procedía Computer Science, 142, 352-355. [CrossRef] [Google Scholar]
  9. Montejo-Ráez, A., & Jiménez-Zafra, S. M. (2022). Current Approaches and Applications in Natural Language Processing. Applied Sciences (Switzerland), 12(10), 10-15. [Google Scholar]
  10. Parnow, K., Li, Z., & Zhao, H. (2020). Grammatical Error Correction: More Data with More Context. 24-29. [Google Scholar]
  11. Pires, T., Schlinger, E., & Garrette, D. (2020). How multilingual is multilingual BERT? ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 4996-5001. [Google Scholar]
  12. Qiu, Z., & Qu, Y. (2019). A Two-Stage Model for Chinese Grammatical Error Correction. IEEE Access, 7, 146772-146777. [CrossRef] [Google Scholar]
  13. Sarhan, I., & Spruit, M. (2020). Can we survive without labelled data in NLP? Transfer learning for open information extraction. Applied Sciences (Switzerland), 10(17). [Google Scholar]
  14. Shaalan, K. F. (2005). Arabic GramCheck: a grammar checker for Arabic. September 2004, 643-665. [Google Scholar]
  15. Singh, S., & Mahmood, A. (2021). The NLP Cookbook: Modern Recipes for Transformer Based Deep Learning Architectures. 68675-68702. [Google Scholar]
  16. Solyman, A., Wang, Z., & Tao, Q. (2019). Proposed model for arabic grammar error correction based on convolutional neural network. Proceedings of the International Conference on Computer, Control, Electrical, and Electronics Engineering 2019, ICCCEEE 2019. [Google Scholar]
  17. Solyman, A., Zhenyu, W., Qian, T., Abdulgader, A., Elhag, M., & Toseef, M. (2021). Synthetic data with neural machine translation for automatic correction in arabic grammar. Egyptian Informatics Journal, 22(3), 303-315. [CrossRef] [Google Scholar]
  18. Zaghouani, W., Mohit, B., Habash, N., Obeid, O., Tomeh, N., Rozovskaya, A., Farra, N., Alkuhlani, S., & Oflazer, K. (2014). Large scale Arabic error annotation: Guidelines and framework. Proceedings of the 9th International Conference on Language Resources and Evaluation, LREC 2014, 2362-2369. [Google Scholar]
  19. UNESCO. World Arabic language day, Dec 2019. [Google Scholar]
  20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.