Open Access
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
Article Number 01016
Number of page(s) 11
Published online 13 February 2024
  1. Ali, F.A.M.; Karim, S.A.A.; Bin Saaban, A.; Hasan, M.K.; Ghaffar, A.; Nisar, K.S.; Baleanu, D. Construction of Cubic Timmer Triangular Patches and its Application in Scattered Data Interpolation. Mathematics 8, 159, doi: 10.3390/math8020159, (2020). [CrossRef] [Google Scholar]
  2. Cavoretto, R.; De Rossi, A.; Dell’Accio, F.; Di Tommaso, F. Fast computation of triangular Shepard interpolants. J. Comput. Appl. Math., 354, 457–470, doi: 10.1016/, (2019). [CrossRef] [MathSciNet] [Google Scholar]
  3. Karim, S.A.A.; Saaban, A.; Hasan, M.K.; Sulaiman, J.; Hashim, I. Interpolation using cubic Bézier triangular patches. Int. J. Adv. Sci. Eng. Inf. Technol. 8, 1746–1752 (2018). [CrossRef] [MathSciNet] [Google Scholar]
  4. Karim, S.A.A., Saaban, A., Skala, V. et al. Construction of new cubic Bezier-like triangular patches with application in scattered data interpolation. Adv Differ Equ, 151 (2020). (2020). [Google Scholar]
  5. Karim, S.A.B.A.; Saaban, A. Visualization Terrain Data Using Cubic Ball Triangular Patches. MATEC Web Conf. 225, 06023, doi: 10.1051/matecconf/201822506023 (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  6. Abdul Karim, S.A.; Saaban, A.; Nguyen, V.T. Scattered Data Interpolation Using Quartic Triangular Patch for Shape-Preserving Interpolation and Comparison with Mesh-Free Methods. Symmetry 2020, 12, 1071. (2020). [CrossRef] [Google Scholar]
  7. Chang, L.; Said, H. A C2 triangular patch for the interpolation of functional scattered data. Comput. Des. 29, 407–412, doi: 10.1016/s0010-4485(96)00068-1 (1995). [Google Scholar]
  8. Draman, N.N.C.; Karim, S.A.A.; Hashim, I. Scattered Data Interpolation Using Rational Quartic Triangular Patches with Three Parameters. IEEE Access, 8, 44239–44262, doi: 10.1109/access.2020.2978173 (2020). [Google Scholar]
  9. Goodman, T.; Said, H.; Chang, L. Local derivative estimation for scattered data interpolation. Appl. Math. Comput. 68, 41–50, doi: 10.1016/0096-3003(94)00086-j, (1995). [MathSciNet] [Google Scholar]
  10. Farin, G. Curves and Surfaces for CAGD: A Practicle Guide, 5th ed.; Palmer, C., Ed.; Morgan Kaufmann: San Diego, CA, USA, (2001). [Google Scholar]
  11. Lodha, S.; Franke, R. Scattered Data Techniques for Surfaces. In Proceedings of the Scientific Visualization Conference (Dagstuhl ‘97), Dagstuhl, Germany, 9–13 June 1997; pp. 189–230 (1997). [Google Scholar]
  12. Piah, A.R.M., Goodman, T.N.T., Unsworth, K. Positivity-Preserving Scattered Data Interpolation. In: Martin, R., Bez, H., Sabin, M. (eds) Mathematics of Surfaces XI. Lecture Notes in Computer Science, vol 3604. Springer, Berlin, Heidelberg. 20, (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.