Open Access
Issue
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
Article Number 01017
Number of page(s) 15
DOI https://doi.org/10.1051/itmconf/20246301017
Published online 13 February 2024
  1. Fran Boyle AM, “Introduction to Cancer”, Cancer Council Australia 2017. [Google Scholar]
  2. Marc B. Garnick, MD, Beth Israel Deaconess Medical Center “An Introduction to Cancer and Basic Cancer Vocabulary”, Harvard Medical School, Boston. [Google Scholar]
  3. K. J. Cios, “Data Mining: A Knowledge Discovery Approach”, Springer, 2007. [Google Scholar]
  4. J. Han, Micheline Kamber and Jian Pei, “Data Mining Concepts and Techniques”, Waltham: Morgan Kaufmann 2012. [Google Scholar]
  5. Freddie Bray, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A. Torre, Ahmedin Jemal, “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries”. IARC 2018. [Google Scholar]
  6. Lakshmi K.Sa, G. Vadivu, ”Extracting Association Rules from Medical Health Records Using Multi-Criteria Decision Analysis”, 2017. [Google Scholar]
  7. Ramah Sivakumar, J.G.R. Sathiaseelan, “A Performance based Empirical Study of the Frequent Itemset Mining Algorithms”, ICPCSI-2017. [Google Scholar]
  8. Sallam Osman Fageeri, Rohiza Ahmad, Baharum B. Bahraini,”BBT: n efficient association rules mining algorithm using binary-based technique”, 2014. [Google Scholar]
  9. Marwa Maweya Abdelbagi ElbasheerID, Ayah Galal Abdelrahman AlkhidirID, Siham Mohammed Awad Mohammed, Areej Abuelgasim Hassan Abbas, Aisha Osman Mohamed, Isra Mahgoub Bereir, Hiba Reyad Abdalazeez, Mounkaila Noma “Spatial distribution of breast cancer in Sudan 2010-2016” Alzaiem Alazhari University, Khartoum, Sudan, 2016. [Google Scholar]
  10. J. Sabthami, K. Thirumoorthy and K. Muneeswaran, “Mining Association Rules for Early Diagnosis of Diseases from Electronic Health Records”, 2016. [Google Scholar]
  11. D. Sheila Freeda, and M. Lilly Florence,”An Overview of Disease Analysis using Association Rule Mining‘, 2017. [Google Scholar]
  12. D. Sheila Freeda, and M. Lilly Florence,“An Overview of Disease Analysis using Association Rule Mining”, 2017. [Google Scholar]
  13. Thabet Slimani, Amor Lazzez, ”Efficient Analysis of Pattern and Association Rule Mining Approaches”, Taif University, KSA. [Google Scholar]
  14. Meera Narvekara, Shafaque Fatma Syedb, An “optimized algorithm for association rule mining using FP “, 2015. [Google Scholar]
  15. Shamila Nasreen, Muhammad Awais Azamb, Khurram Shehzada, Usman Naeemc, Mustansar Ali Ghazanfara, ”Frequent Pattern Mining Algorithms for Finding Associated Frequent Patterns for Data Streams: A Survey“, 2014. [Google Scholar]
  16. Shivam Sidhu D, Upendra Kumar, Aditya Nawani, FP Growth Algorithm Implementation, India, 2014. [Google Scholar]
  17. M.S. Mythili,A.R. Mohamed Shanavas, “Performance Evaluation of Apriori and FP-Growth Algorithms”, 2013. [Google Scholar]
  18. Görkem Sariyer, “Highlighting the rules between diagnosis types and laboratory diagnostic tests for patients of an emergency department: Use of association rule mining”, 2019. [Google Scholar]
  19. Wen-Tao Wu, Yuan-Jie Li, Ao-Zi Feng, Li Li, Tao Huang, An-Ding Xu, Jun Lyu “Data mining in clinical big data: the frequently used databases, steps, and methodological models”, 2021. [Google Scholar]
  20. Shiting Ding, Zhiheng Li, Kai Zhang, Feng Mao “A Comparative Study of Frequent Pattern Mining with Trajectory Data”, 2022. [Google Scholar]
  21. Mohammed Al-Maolegi, Bassam Arkok “An improved apriori algorithm for association rules”, 2014. [Google Scholar]
  22. J. Han, Micheline Kamber and Jian Pei, Data Mining Concepts and Techniques, Waltham: Morgan Kaufmann 2012. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.