Open Access
Issue |
ITM Web Conf.
Volume 63, 2024
1st International Conference on Advances in Machine Intelligence, and Cybersecurity Technologies (AMICT2023)
|
|
---|---|---|
Article Number | 01018 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/itmconf/20246301018 | |
Published online | 13 February 2024 |
- Rham, G. D. (1956). Sur une courbe plane. J. Math. Pures Appl.(9), 35, 25-42. [Google Scholar]
- Chaikin, G. M. (1974). An algorithm for high-speed curve generation. Computer graphics and image processing, 3(4), 346-349. [CrossRef] [Google Scholar]
- Riesenfeld, R. F. (1975). On Chaikin’s algorithm. Computer Graphics and Image Processing, 4(3), 304-310. [CrossRef] [Google Scholar]
- Catmull, E., & Clark, J. (1978). Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-aided design, 10(6), 350-355. [CrossRef] [Google Scholar]
- Doo, D., & Sabin, M. (1978). Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design, 10(6), 356-360. [CrossRef] [Google Scholar]
- Ball, A. A., & Storry, D. J. T. (1986). A matrix approach to the analysis of recursively generated B-spline surfaces. Computer-Aided Design, 18(8), 437-442. [CrossRef] [Google Scholar]
- Dyn, N., Levin, D., & Gregory, J. A. (1987). A 4-point interpolatory subdivision scheme for curve design. Computer aided geometric design, 4(4), 257-268. [CrossRef] [MathSciNet] [Google Scholar]
- Dyn, N., Levine, D., & Gregory, J. A. (1990). A butterfly subdivision scheme for surface interpolation with tension control. ACM transactions on Graphics (TOG), 9(2), 160-169. [CrossRef] [MathSciNet] [Google Scholar]
- Reif, U. (1995). A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Geometric Design, 12(2), 153-174. [CrossRef] [MathSciNet] [Google Scholar]
- Dyn, N.; Iske, A.; Quak, E.; Floater, M.S. Tutorials on Multiresolution in Geometric Modelling, Summer School Lecture Notes Series: Mathematics and Visualization; Springer Science & Business Media: Berlin, Germany, 2002. [Google Scholar]
- Mustafa, G.; Hashmi, M.S. Subdivision depth computation for n-ary subdivision curves/surfaces. Vis. Comput. 2010, 26, 841-851. [CrossRef] [Google Scholar]
- Shang, Y. Lack of Gromov-hyperbolicity in small-world networks. Cent. Eur. J. Math. 2011, 10, 1152-1158. [Google Scholar]
- Siddiqi, S.S.; Younis, M. The Quaternary Interpolating Scheme for Geometric Design. Int. Sch. Res. Not. 2013, 2013. [Google Scholar]
- Mustafa, G.; Ashraf, P.; Deng, J. Generalized and unified families of interpolating subdivision schemes. Numer. Math. Theory Method. Appl. 2014, 7, 193-213. [CrossRef] [Google Scholar]
- Rehan, K.; Siddiqi, S.S. A Family of Ternary Subdivision Schemes for Curves. Appl. Math. Comput. 2015, 270, 114-123. [MathSciNet] [Google Scholar]
- Rehan, K.; Sabri, M.A. A combined ternary 4-point subdivision scheme. Appl. Math. Comput. 2016, 276, 278-283. [MathSciNet] [Google Scholar]
- Y.-X. Hao, R.-H. Wang, C.-J. Li, Analysis of a 6-point binary subdivision scheme, Applied Mathematics and Computation 218 (7) (2011) 3209–3216. [CrossRef] [MathSciNet] [Google Scholar]
- C. Zhijie, Four-point scheme and convexy-preserving algorithm, Journal of Computer-Aided Design and Computer Graphics. [Google Scholar]
- Y. Wang, Z. Li, A family of convexity-preserving subdivision schemes, Journal of Mathematical Research with Applications 37 (4) (2017) 489–495. [MathSciNet] [Google Scholar]
- M. F. Hassan, I. Ivrissimitzis, N. A. Dodgson, M. A. Sabin, An interpolating 4-point c2 ternary stationary subdivision scheme, Computer Aided Geometric Design 19 (1) (2002) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
- G. Albrecht, L. Romani, Convexity preserving interpolatory subdivision with conic precision, Applied Mathematics and Computation 219 (8) (2012) 4049–4066. [CrossRef] [MathSciNet] [Google Scholar]
- P. Novara, L. Romani, On the interpolating 5-point ternary subdivision scheme: A revised proof of convexity-preservation and an application-oriented extension 147. [Google Scholar]
- Mustafa, G., Khan, F., & Ghaffar, A. (2009). The m-point approximating subdivision scheme. Lobachevskii Journal of Mathematics, 30(2), 138-145. [CrossRef] [MathSciNet] [Google Scholar]
- Mustafa, G., Ghaffar, A., & Khan, F. (2011). The odd-point ternary approximating schemes. American Journal of Computational Mathematics, 1(02), 111. [CrossRef] [Google Scholar]
- Ghaffar, A.; Mustafa, G.; Qin, K. Unification and application of 3-point approximating subdivision schemes of varying arity. Open J. Appl. Sci. 2012, 2, 48-52. [CrossRef] [Google Scholar]
- Ghaffar, A.; Mustafa, G.; Qin, K. The 4-point 3-ary approximating subdivision scheme. Open J. Appl. Sci. 2013, 3, 106-111. [CrossRef] [Google Scholar]
- Ashraf, P., Nawaz, B., Baleanu, D., Sooppy Nisar, K., Ghaffar, A., Khan, M. A. A., & Akram, S. (2020). Analysis of geometric properties of ternary four-point rational interpolating subdivision scheme. Mathematics, 8(3), 338. [CrossRef] [Google Scholar]
- Ashraf, P., Ghaffar, A., Baleanu, D., Sehar, I., Nisar, K. S., & Khan, F. (2020). Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme. Mathematics, 8(5), 806. [CrossRef] [Google Scholar]
- Shahzad, A.; Khan, F.; Ghaffar, A.; Mustafa, G.; Nisar, K.S.; Baleanu, D. A novel numerical algorithm to estimate the subdivision depth of binary subdivision schemes. Symmetry 2020, 12, 66. [CrossRef] [Google Scholar]
- Hussain, S. M., Rehman, A. U., Baleanu, D., Nisar, K. S., Ghaffar, A., & Abdul Karim, S. A. (2020). Generalized 5-point approximating subdivision scheme of varying arity. Mathematics, 8(4), 474. [CrossRef] [MathSciNet] [Google Scholar]
- N. Dyn, M. S. Floater and K. Horman, A C2 Four-Point Subdivision Scheme with Fourth Order Accuracy and its Extension, in Mathematical Methods for Curves and Surfaces: Tromso 2004, M. Daehlen, K. Morken, and L. L. Schumaker (eds.), 2005, 145-156. [Google Scholar]
- Mustafa, G., & Hashmi, M. S. (2010). Subdivision depth computation for n-ary subdivision curves/surfaces. The Visual Computer, 26(6-8), 841-851. [CrossRef] [Google Scholar]
- Karim, S.A.A. Rational bi-quartic spline with six parameters for surface interpolation with application in image enlargement. IEEE Access 2020, 8, 115621–115633. https://doi.org/10.1109/ACCESS.2020.3002387. [CrossRef] [Google Scholar]
- Karim, S.A.A.; Saaban, A.; Nguyen, V.T. Scattered data interpolation using quartic triangular patch for shape-preserving interpolation and comparison with mesh-free methods. Symmetry 2020, 12, 1071. https://doi.org/10.3390/sym12071071. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.