Open Access
Issue
ITM Web Conf.
Volume 72, 2025
III International Workshop on “Hybrid Methods of Modeling and Optimization in Complex Systems” (HMMOCS-III 2024)
Article Number 04008
Number of page(s) 9
Section Data Mining, Machine Learning and Pattern Recognition
DOI https://doi.org/10.1051/itmconf/20257204008
Published online 13 February 2025
  1. M. Hosseinzadeh, P. Khoshvaght, S. Sadeghi, P. Asghari, P. Varzeghani, A. Varzeghani, M. Mohammadi, H. Mohammadi, J. Lansky, S. Lee, A Model for Epileptic Seizure Diagnosis Using the Combination of Ensemble Learning and Deep Learning, IEEE Access. pp. 1-1. (2024), doi: 10.1109/ACCESS.2024.3457018 [Google Scholar]
  2. Y. Yang, N. D. Truong, C. Maher, A. Nikpour, O. Kavehei, Continental generalization of a human-in-the-loop AI system for clinical seizure recognition, Expert Systems with Applications, 207:118083, (2022) [CrossRef] [Google Scholar]
  3. K. Saab, J. Dunnmon, C. Ré, D. Rubin, C. Lee-Messer, Weak supervision as an efficient approach for automated seizure detection in electroencephalography, NPJ digital medicine, 3, 59 (2020). doi: 10.1038/s41746-020-0264-0 [Google Scholar]
  4. U. Asif, S. Roy, J. Tang, S. Harrer, SeizureNet: A Deep Convolutional Neural Network for Accurate Seizure Type Classification and Seizure Detection. arXiv Prepr. arXiv1903.03232 (2019). [Google Scholar]
  5. Y. Sun et al., Continuous Seizure Detection Based on Transformer and Long-Term iEEG, in IEEE Journal of Biomedical and Health Informatics, 26(11), 5418-5427 (2022). doi: 10.1109/JBHI.2022.3199206. [CrossRef] [Google Scholar]
  6. M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, A. I. Bagi′c, Seizure detection: interreader agreement and detection algorithm assessments using a large dataset, J. Clin. Neurophysiol., 38, 439–47 (2021). [CrossRef] [Google Scholar]
  7. C. N. Joshi, K. E. Chapman, J. J. Bear, S. B. Wilson, D. J. Walleigh, M. L. Scheuer, Semiautomated spike detection software persyst 13 is noninferior to human readers when calculating the spike-wave index in electrical status epilepticus in sleep, J. Clin. Neurophysiol., 35, 370–4 (2018) [CrossRef] [Google Scholar]
  8. I. Obeid, J. Picone, The temple university hospital EEG data corpus, Frontiers in Neuroscience, 10, 00196 (2016). [CrossRef] [Google Scholar]
  9. C. da Silva Lourenço, M. C. Tjepkema-Cloostermans, M.J. van Putten, Machine learning for detection of interictal epileptiform discharges, Clin. Neurophysiol., 132 1433–43 (2021). [CrossRef] [Google Scholar]
  10. A. Omar, T. Abd El-Hafeez, Optimizing epileptic seizure recognition performance with feature scaling and dropout layers, Neural Computing and Applications 36, 2835–2852 (2023). doi: 10.1007/s00521-023-09204-6. [Google Scholar]
  11. Y. Hao, H. M. Khoo, N. von Ellenrieder, N. Zazubovits, J. Gotman, DeepIED: an epileptic discharge detector for EEG-fMRI based on deep learning, NeuroImage, 17, 962–75 (2018). [CrossRef] [Google Scholar]
  12. S. Clarke, Computer-assisted EEG diagnostic review for idiopathic generalized epilepsy Epilepsy, Behav., 121, 106556 (2019) [Google Scholar]
  13. H. He, B. Yang, A. G. Edwardo, L. Shutao, ADASYN: Adaptive synthetic sampling approach for imbalanced learning, In IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322-1328, (2008). [Google Scholar]
  14. I. J. Goodfellow, Y. Bengio, A. Courville, Deep Learning (Cambridge, MA, USA: MIT Press, 2016). [Google Scholar]
  15. D. Nhu, M. Janmohamed, A. Antonic-Baker, et al., Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review, J Neural Eng. 19(5) 051002 (2022), doi: 10.1088/1741-2552/ac9644 [CrossRef] [MathSciNet] [Google Scholar]
  16. X. Zhang, L. Yao, M. Dong, Z. Liu, Y. Zhang, Y. Li, Adversarial representation learning for robust patient-independent epileptic seizure detection, IEEE Journal of Biomedical and Health Informatics, 24, 2852–2859 (2020) [CrossRef] [Google Scholar]
  17. D. Moodasarige Shama, J. Jing, A. Venkataraman, Deep- SOZ: A Robust Deep Model for Joint Temporal and Spatial Seizure Onset Localization from Multichannel EEG Data, 10, 184–194 (2023). [Google Scholar]
  18. M. Golmohammadi, A. H. Harati Nejad Torbati, S. Lopez de Diego, I. Obeid, J. Picone, Automatic analysis of EEGS using big data and hybrid deep learning architectures, Frontiers in Human Neuroscience, 13, 00076 (2019). [CrossRef] [Google Scholar]
  19. Y. Ma, C. Liu, M. S. Ma, Y. Yang, N. D. Truong, K. Kothur, A. Nikpour, O. Kavehei, Tsd: Transformers for seizure detection, bioRxiv, (2023). [Google Scholar]
  20. S. Tang, J. A. Dunnmon, K. Saab, X. Zhang, Q. Huang, F. Dubost, D. Rubin, C. Lee-Messer, Self-supervised graph neural networks for improved electroencephalographic seizure analysis, in International Conference on Learning Representations (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.