Open Access
Issue
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
Article Number 03006
Number of page(s) 15
Section Engineering, Smart Systems, and Optimization
DOI https://doi.org/10.1051/itmconf/20257403006
Published online 20 February 2025
  1. Kim, Issac I. and Eric Korevaar. Availability of Free Space Optics (FSO) and Hybrid FSO/RF Systems. Optical Access, Incorporated; 2002 [Google Scholar]
  2. Muhammad, S.S.; Brandl, P.; Leitgeb, E.; Koudelka, O.; Jelovcan, I., “VHDL Based FPGA Implementation of 256-ary PPM for Free Space Optical Links,” in Transparent Optical Networks, 2007. ICTON ‘07. 9th International Conference on, vol.3, no., pp.174–177, 1-5 July 2007. [CrossRef] [Google Scholar]
  3. Subratkar; V.K. Jain; Sumit Chouhn; Vimal Kumar, “VHDL Based Fpga Implementation Of 256-Ary Dppm For Free Space Optical Link”. In International Conference on Electrical, Electronics, Computer Science and Mathematics Physical Education & Management, (ICEECMPE), 07th December 2014, New Delhi,India. [Google Scholar]
  4. Da-shan Shiu, Student Member, IEEE, and Joseph M. Kahn, Senior Member, IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 47, no. 8, AUGUST 1999. Pp. 1–5 [Google Scholar]
  5. https://en.wikipedia.org/wiki/Firstprinciple [Google Scholar]
  6. Hao J., Wang T., Yin H., Yang D., Li Y. Bolt looseness detection based on piezoelectric impedance frequency shift. Appi. Sci. 2016;6:298. doi: 10.3390/app6100298. [CrossRef] [Google Scholar! [CrossRef] [Google Scholar]
  7. Zhu J., Wang N., Ho S.C., Song G. Method for Rapid Impact Localization for Subsea Structures. IEEE Sens. J. 2018;18:3554–3563. doi: 10.1109/JSEN.2018.2815267. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  8. Fan S., Zhao S., Qi B., Kong Q. Damage Evaluation of Concrete Column under Impact Load Using a Piezoelectric-Based EMI Technique. Sensors. 2018;18:1591. doi: 10.3390/s18051591. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  9. Xu K., Deng Q., Cai L., Ho S., Song G. Damage detection of a concrete column subject to blast loads using embedded piezoceramic transducers. Sensors. 2018;18:1377. doi: 10.3390/s18051377. [PMC free article] [PubMed] [CrossRefĮ [Google Scholar] [CrossRef] [Google Scholar]
  10. Liu T., Zou D., Du C., Wang Y. Influence of axial loads on the health monitoring of concrete structures using embedded piezoelectric transducers. Struct. Health Monit. 2017;16:202–214. doi: 10.1177/1475921716670573. [CrossRefĮ [Google Scholar] [CrossRef] [Google Scholar]
  11. Wang F., Huo L., Song G. A piezoelectric active sensing method for quantitative monitoring of bolt loosening using energy dissipation caused by tangential damping based on the fractal contact theory. Smart Mater. Struct. 2017;27:015023. doi: 10.1088/1361-665X/aa9a65. [CrossRef] [Google Scholar] [Google Scholar]
  12. Lu G., Li Y., Zhou M., Feng Q., Song G. Detecting Damage Size and Shape in a Plate Structure Using PZT Transducer Array. J. Aerosp. Eng. 2018;31:04018075. doi: 10.1061/(ASCE)AS.1943-5525.0000904. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  13. Fan X., Li J., Hao H., Ma S. Identification of Minor Structural Damage Based on Electromechanical Impedance Sensitivity and Sparse Regularization. J. Aerosp. Eng. 2018;31:04018061. doi: 10.1061/(ASCE)AS.1943-5525.0000892. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  14. Siu S., Ji Q., Wu W., Song G., Ding Z. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel. Smart Mater. Struct. 2014;23:125030. Doi [CrossRef] [Google Scholar]
  15. Huynh T.C., Kim J.T. Impedance-based cable force monitoring in tendon-anchorage using portable PZT-interface technique. Math. Probl. Eng. 2014;2014:784731. doi: 10.1155/2014/784731. [CrossRefI [Google Scholar] [CrossRef] [Google Scholar]
  16. Huynh T.C., Kim J.T. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage. Smart Mater. Struct. 2017;26:125004. doi: 10.1088/1361-665X/aa931b. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  17. Huynh T.C., Nguyen T.C., Choi S.H., Kim J.T. April. Impedance monitoring at tendon-anchorage via mountable PZT interface and temperature-effect compensation. Act. Passive Smart Struct. Integr. Syst. 2016;9799:97990A. [Google Scholar] [Google Scholar]
  18. Na W., Baek J. A review of the piezoelectric electromechanical impedance based structural health monitoring technique for engineering structures. Sensors. 2018;18:1307. doi: 10.3390/s18051307. [PMC free article] [PubMed] [CrossRefĮ [Google Scholar] [CrossRef] [Google Scholar]
  19. Na W., Seo D.W., Kim B.C., Park K.T. Effects of applying different resonance amplitude on the performance of the impedance-based health monitoring technique subjected to damage. Sensors. 2018;18:2267. doi: 10.3390/s18072267. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  20. Kong Q., Robert R.H., Silva P., Mo Y.L. Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using piezoceramic-based smart aggregates. Appl. Sci. 2016;6:341. doi: 10.3390/app6110341. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  21. Jiang T., Kong Q., Patil D., Luo Z., Huo L., Song G. Detection of debonding between fiber reinforced polymer bar and concrete structure using piezoceramic transducers and wavelet packet analysis. IEEE Sens. J. 2017;17:1992–1998. doi: 10.1109/JSEN.2017.2660301. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  22. Zhang J., Xu J., Guan W., Du G. Damage Detection of Concrete-Filled Square Steel Tube (CFSST) Column Joints under Cyclic Loading Using Piezoceramic Transducers. Sensors. 2018;18:3266. doi: 10.3390/s18103266. [PMC free article] [PubMed] [CrossRef] [Google Schoar] [CrossRef] [Google Scholar]
  23. Kong Q., Fan S., Bai X., Mo Y.L., Song G. A novel embeddable spherical smart aggregate for structural health monitoring: Part I. Fabrication and electrical characterization. Smart Mater. Struct. 2017;26:095050. doi: 10.1088/1361-665X/aa80bc. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  24. Feng Q., Cui J., Wang Q., Fan S., Kong Q. A feasibility study on real-time evaluation of concrete surface crack repairing using embedded piezoceramic transducers. Measurement. 2018;122:591–596. doi: 10.1016/j.measurement.2017.09.015. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  25. Kailaswar S., Zheng R., Kovitz J., Phung Q., Wang H., Ding Z., Song G. ConcreteCom: A new communication paradigm for building structural health monitoring; Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings; Toronto, ON, Canada. 6 November 2012; pp. 131–137. [Google Scholar] [CrossRef] [Google Scholar]
  26. Yang D.-X., Hu Z., Zhao H., Hu H.-F., Sun Y.-Z., Hou B.-J. Through-metal-wall power delivery and data transmission for enclosed sensors: A review. Sensors. 2015;15:31581–31605. doi: 10.3390/s151229870. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  27. Lawry T.J., Saulnier G.J., Ashdown J.D., Wilt K.R., Scarton H.A., Pascarelle S., Pinezich J.D. Penetration-free system for transmission of data and power through solid metal barriers; Proceedings of the Military Communications Conference; Baltimore, MD, USA. 7-10 November 2011; pp. 389–395. [Google Scholar] [Google Scholar]
  28. Lawry T. Ph.D. Thesis. Rensselaer Polytechnic Institute; Troy, NY, USA: 2011. A High Performance System for Wireless Transmission of Power and Data through Solid Metal Enclosures. [Google Scholar] [Google Scholar]
  29. Lawry T.J., Wilt K.R., Ashdown J.D., Scarton H.A., Saulnier G.J. A highperformance ultrasonic system for the simultaneous transmission of data and power through solid metal barriers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2013;60:194–203. doi: 10.1109/TUFFC.2013.2550. [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  30. Chase R. Ph.D. Thesis. Rensselaer Polytechnic Institute; Troy, NY, USA: 2013. Microcontroller Based Handheld Acoustic Communication & Power Delivery through Metallic Barriers. [Google Scholar] [Google Scholar]
  31. Welle R.P. Ultrasonic Data Communication System. No. 5,982,297. U.S. Patent. 1999 Nov 9; [Google Scholar]
  32. Rein C. Remote Energy Supply Process and System for an Electronic Information Carrier. No. 6,639,872. U.S. Patent. 2003 Oct 28; [Google Scholar]
  33. Murphy T.L. Ultrasonic Digital Communication System for a Steel Wall Multipath Channel: Methods and Results. Knolls Atomic Power Laboratory (KAPL); Niskayuna, NY, USA: 2005. [Google Scholar] [CrossRef] [Google Scholar]
  34. Saulnier G., Scarton H., Gavens A., Shoudy D., Murphy T., Wetzel M., Bard S., Roa-Prada S., Das P. P1g-4 through-wall communication of low-rate digital data using ultrasound; Proceedings of the 2006 IEEE Ultrasonics Symposium; Vancouver, BC, Canada. 2-6 October 2006; pp. 1385–1389. [Google Scholar] [CrossRef] [Google Scholar]
  35. Moore J.L., Shah V.V., Gardner W.R., Kyle D.G., Mcgregor M.D., Beste R.T., Hensarling J.K., Sharonov S.A. Wireless Communications in a Drilling Operations Environment. No. 8,544,564. U.S. Patent. 2013 Oct 1; [Google Scholar]
  36. Akyildiz I.F., Pompili D., Melodia T. Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Rev. 2004;1:3–8. doi: 10.1145/1121776.1121779. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  37. Gardner W.R., Hyden R.E., Linyaev E.J., Gao L., Robbins C., Moore J. Acoustic telemetry delivers more real-time downhole data in underbalanced drilling operations; Proceedings of the IADC/SPE Drilling Conference; Miami, FL, USA. 21-23 February 2006. [Google Scholar] [Google Scholar]
  38. Kumar L.S., Han W.K., Guan Y.L., Sun S., Lee Y.H. Optimal energy transfer pipe arrangement for acoustic drill string telemetry. IEEE Trans. Geosci. Remote Sens. 2014;52:6999–7007. doi: 10.1109/TGRS.2014.2306686. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  39. Shah V.V., Linyaev E.J., Kyle D.G., Gardner W.R., Moore J.L. Acoustic Telemetry Transceiver. No. 8,040,249. U.S. Patent. 2011 Oct 18; [Google Scholar]
  40. Alenezi A.H., Abdi A. Experimental results on acoustic communication through drill strings using a strain sensor receiver. J. Acoust. Soc. Am. 2017;141:3914. doi: 10.1121/1.4988829. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  41. Harper G., Almanza E., Fosså A., Finley D., Strang G. Implementation of advanced acoustic telemetry system adds value and efficiency to well testing operations; Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition; Jakarta, Indonesia. 9-11 September 2003. [Google Scholar] [Google Scholar]
  42. Manolakis K., Krüger U., Krüger K., Gutierrez-Estevez M., Mikulla S., Jungnickel V. Borehole communication with acoustic OFDM; Proceedings of the International OFDM-Workshop (InOWo’11); Hamburg, Germany. 31 August-1 September 2011. [Google Scholar] [Google Scholar]
  43. Pan S., Xu Z., Li D., Lu D. Research on Detection and Location of Fluid-Filled Pipeline Leakage Based on Acoustic Emission Technology. Sensors. 2018;18:3628. doi: 10.3390/s18113628. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  44. Meng L., Yuxing L., Wuchang W., Juntao F. Experimental study on leak detection and location for gas pipeline based on acoustic method. J. Loss Prev. Process Ind. 2012;25:90–102. doi: 10.1016/jjlp.2011.07.001. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  45. Del Giudice S. Ph.D. Thesis. Dipartimento Di Elettronica, Informazione E Bioingegneria; Milan, Italy: 2014. Acoustic Pipeline Monitoring: Theory and Technology. [Google Scholar] [Google Scholar]
  46. Jin Y., Ying Y., Zhao D. Time reversal data communications on pipes using guided elastic waves: Part II. Experimental studies. Health Monit. Struct. Biol. Syst. 2011;7984:79840C. [Google Scholar] [Google Scholar]
  47. Jin Y., Zhao D., Ying Y. Time reversal data communication on pipes using guided elastic waves—Part I: Basic principles Proc. SPIE Health Monit. Struct. Biol. Syst. 2012;7984:1–12. [Google Scholar] [Google Scholar]
  48. Trane G., Mijarez R., Guevara R., Pascacio D. PPM-based system for guided waves communication through corrosion resistant multi-wire cables. Phys. Procedía. 2015;70:672–675. doi: 10.1016/j.phpro.2015.08.076. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  49. Trane G., Mijarez R., Guevara R., Baltazar A. PZT guided waves sensor permanently attached on multi-wire AWG12 cables used as communication medium. AIP Conf. Proc. 2015;1650:631–639. [Google Scholar] [CrossRef] [Google Scholar]
  50. Trane G., Mijarez R., Guevara R., Baltazar A. Guided wave sensor for simple digital communication through an oil industry multi-wire cable. Insight-Non-Destr. Test. Cond. Monit. 2018;60:206–211. doi: 10.1784/insi.2018.60.4.206. [CrossRef] [Google Scholar] [Google Scholar]
  51. Chakraborty S., Saulnier G.J., Wilt K.W., Litman R.B., Scarton H.A. Low-rate ultrasonic communication axially along a cylindrical pipe; Proceedings of the 2014 IEEE International Ultrasonics Symposium; Chicago, IL, USA. 3-6 September 2014; pp. 547–551. [Google Scholar] [CrossRef] [Google Scholar]
  52. Chakraborty S., Saulnier G.J., Wilt K.W., Curt E., Scarton H.A., Litman R.B. Low- power, low-rate ultrasonic communications system transmitting axially along a cylindrical pipe using transverse waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015;62:1788–1796. doi: 10.1109/TUFFC.2015.007078. [PubMed] [CrossRef] [Google Scholar] [CrossRef] [MathSciNet] [Google Scholar]
  53. Moll J., De Marchi L., Marzani A. Transducer-to-Transducer Communication in Guided Wave Based Structural Health Monitoring; Proceedings of the 19th World Conference on Non-Destructive Testing; Munich, Germany. 13-17 June 2016; pp. 18. [Google Scholar] [Google Scholar]
  54. Joseph K.M., Kerkez B. Enabling communications for buried pipe networks; Proceedings of the World Environmental and Water Resources Congress; Portland, OR, USA. 1-5 June 2014; pp. 899–910. [Google Scholar] [Google Scholar]
  55. Azhari H. Basics of Biomedical Ultrasound for Engineers. John Wiley & Sons; Hoboken, NJ, USA: 2010. Propagation of Acoustic Waves in Solid Materials; pp. 7592. [Google Scholar] [Google Scholar]
  56. Macaulay M. Introduction to Impact Engineering. Springer Science & Business Media; Berlin, Germany: 2012. [Google Scholar] [Google Scholar]
  57. Sari H., Woodward B. Underwater acoustic voice communications using digital pulse position modulation; Proceedings of the Oceans ‘97, MTS/IEEE Conference Proceedings; Halifax, NS, Canada. 6-9 October 1997; pp. 870–874. [Google Scholar] [CrossRef] [Google Scholar]
  58. Tranter W.H., Rappaport T.S., Kosbar K.L., Shanmugan K.S. Principles of Communication Systems Simulation with Wireless Applications. Volume 1 Prentice Hall; Upper Saddle River, NJ, USA: 2004. [Google Scholar] [Google Scholar]
  59. Ge L., Yue G., Affes S. On the BER performance of pulse-position-modulation UWB radio in multipath channels; Proceedings of the Ultra Wideband Systems and Technologies; Baltimore, MD, USA. 21-23 May 2002; pp. 231–234. [Google Scholar] [Google Scholar]
  60. Peng J., Hu S., Zhang J., Cai C.S., Li L.Y. Influence of cracks on chloride diffusivity in concrete: A five-phase mesoscale model approach. Constr. Build. Mater. 2019;197:587–596. doi: 10.1016/j.conbuildmat.2018.11.208. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  61. Likhanova N.V., Nava N., Olivares-Xometl O., Domínguez-Aguilar M.A., Arellanes-Lozada P., Lijanova I.V., Arriola-Morales J., Lartundo-Rojas L. Corrosion Evaluation of Pipeline Steel API 5L X52 in partially deaerated Produced Water with High Chloride Content. Int. J. Electrochem. Sci. 2018;13:7949–7967. doi: 10.20964/2018.08.13. [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  62. Xu K., Ren C., Deng Q., Jin Q., Chen X. Real-time monitoring of bond slip between GFRP bar and concrete structure using piezoceramic transducer-enabled active sensing. Sensors. 2018;18:2653. doi: 10.3390/s18082653. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  63. Xu J., Wang C., Li H., Zhang C., Hao J., Fan S. Health Monitoring of Bolted Spherical Joint Connection Based on Active Sensing Technique Using Piezoceramic Transducers. Sensors. 2018;18:1727. doi: 10.3390/s18061727. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  64. Lu G., Feng Q., Li Y., Wang H., Song G. Characterization of ultrasound energy diffusion due to small-size damage on an aluminum plate using piezoceramic transducers. Sensors. 2017;17:2796. doi: 10.3390/s17122796. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Google Scholar]
  65. Zhang J., Huang Y., Zheng Y. A Feasibility Study on Timber Damage Detection Using Piezoceramic-Transducer-Enabled Active Sensing. Sensors. 2018;18:1563. doi: 10.3390/s18051563. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  66. Du G., Kong Q., Zhou H., Gu H. Multiple cracks detection in pipeline using damage index matrix based on piezoceramic transducer-enabled stress wave propagation. Sensors. 2017;17:1812. doi: 10.3390/s17081812. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.