Open Access
Issue
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
Article Number 03007
Number of page(s) 12
Section Engineering, Smart Systems, and Optimization
DOI https://doi.org/10.1051/itmconf/20257403007
Published online 20 February 2025
  1. Wayesa, F., Leranso, M., Asefa, G., Kedir, A. (2023). Pattern based hybrid book recommendation system using semantic relationships. Scientific Reports, 13(1), 3693. [CrossRef] [Google Scholar]
  2. Saleh, A. M., Taqa, A. Y. (2023). A proposed User-Based Approach for eBooks Recommendation Using a Weighted Nearest Neighbor Technique. Sinkron: jurnal dan penelitian teknik informatika, 7(3), 1316–1325. [Google Scholar]
  3. Devika, P., Jisha, R. C., Sajeev, G. P. (2016, December). A novel approach for book recommendation systems. In 2016 IEEE international conference on computational intelligence and computing research (ICCIC) (pp. 1–6). IEEE. [Google Scholar]
  4. Sohail, S. S., Siddiqui, J., Ali, R. (2013, August). Book recommendation system using opinion mining technique. In 2013 international conference on advances in computing, communications and informatics (ICACCI) (pp. 1609–1614). IEEE. [CrossRef] [Google Scholar]
  5. Sarma, D., Mittra, T., Hossain, M. S. (2021). Personalized book recommendation system using machine learning algorithm. International Journal of Advanced Computer Science and Applications, 12(1). [CrossRef] [Google Scholar]
  6. Devika, P. V., Jyothisree, K., Rahul, P. V., Arjun, S., Narayanan, J. (2021, July). Book recommendation system. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1–5). IEEE. [Google Scholar]
  7. Mathew, P., Kuriakose, B., Hegde, V. (2016, March). Book Recommendation System through content based and collaborative f iltering method. In 2016 International conference on data mining and advanced computing (SAPIENCE) (pp. 47–52). IEEE. [CrossRef] [Google Scholar]
  8. Anwar, K., Siddiqui, J., Saquib Sohail, S. (2019, February). Machine learning techniques for book recommendation: an overview. In Proceedings of International Conference on Sustainable Computing in Science, Technology and Management (SUSCOM), Amity University Rajasthan, Jaipur-India. [Google Scholar]
  9. Anwar, T., Uma, V. (2022). CD-SPM: Cross-domain book recommendation using sequential pattern mining and rule mining. Journal of King Saud University-Computer and Information Sciences, 34(3), 793–800. [CrossRef] [Google Scholar]
  10. Tsuji, K., Takizawa, N., Sato, S., Ikeuchi, U., Ikeuchi, A., Yoshikane, F., Itsumura, H. (2014). Book recommendation based on library loan records and bibliographic information. Procedia social and behavioral sciences, 147, 478–486. [CrossRef] [Google Scholar]
  11. Cho, S., Park, J., Um, J. (2024). Development of Fine-Tuned Retrieval Augmented Language Model specialized to manual books on machine tools. IFAC-PapersOnLine, 58(19), 187–192. [CrossRef] [Google Scholar]
  12. Ye, L., Yimeng, Y., Wei, C. (2023). Analyzing Public Perception of Educational Books via Text Mining of Online Reviews. Procedia Computer Science, 221, 617–625. [13] Rajpurkar, S., Bhatt, D., Malhotra, P., Rajpurkar, M. S. S., Bhatt, M. D. R. (2015). Book recommendation system. International Journal for Innovative Research in Science Technology, 1(11), 314–316 [CrossRef] [Google Scholar]
  13. Duhan, A., Arunachalam, N. (2024, July). Book recommendation system using machine learning. In AIP Conference Proceedings (Vol. 3075, No. 1). AIP Publishing. [Google Scholar]
  14. Osborne, F., Thanapalasingam, T., Salatino, A., Birukou, A., Motta, E. (2017). Smart book recommender: A semantic recommendation engine for editorial products [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.