Open Access
Issue |
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
|
|
---|---|---|
Article Number | 03008 | |
Number of page(s) | 13 | |
Section | Engineering, Smart Systems, and Optimization | |
DOI | https://doi.org/10.1051/itmconf/20257403008 | |
Published online | 20 February 2025 |
- Prabowo, R., & Thelwall, M. Sentiment analysis: A combined approach. Journal of Informetrics, 3(2), 143–157 (2009). [CrossRef] [Google Scholar]
- Medhat, W., Hassan, A., & Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams engineering journal, 5(4), 1093–1113 (2014). [CrossRef] [Google Scholar]
- Ullah, M. A., Marium, S. M., Begum, S. A., & Dipa, N. S. An algorithm and method for sentiment analysis using the text and emoticon. ICT Express (2020). [Google Scholar]
- Mejova, Y. Sentiment analysis: An overview. University of Iowa, Computer Science Department (2009). [Google Scholar]
- Gatti, L., Guerini, M., & Turchi, M. SentiWords: Deriving a high precision and high coverage lexicon for sentiment analysis. IEEE Transactions on Affective Computing, 7(4), 409–421. (2015). [Google Scholar]
- Soleymani, M., Garcia, D., Jou, B., Schuller, B., Chang, S. F., & Pantic, M. A survey of multimodal sentiment analysis. Image and Vision Computing, 65, 3–14 (2017). [CrossRef] [Google Scholar]
- Khoo, C. S., & Johnkhan, S. B. Lexicon-based sentiment analysis: Comparative evaluation of six sentiment lexicons. Journal of Information Science, 44(4), 491–511 (2018). [CrossRef] [Google Scholar]
- Baccianella, S., Esuli, A., & Sebastiani, F. Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In LREC (Vol. 10, No. 2010, pp. 2200–2204) (2010). [Google Scholar]
- Zhang, Z., Ye, Q., Zhang, Z., & Li, Y. Sentiment classification of Internet restaurant reviews written in Cantonese. Expert Systems with Applications, 38(6), 7674–7682 (2011). [CrossRef] [Google Scholar]
- Liu, H., Lieberman, H., & Selker, T. A model of textual affect sensing using real- world knowledge. In Proceedings of the 8th international conference on Intelligent user interfaces (pp. 125–132) (2003). [Google Scholar]
- Ravi, K., & Ravi, V. A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Systems, 89, 14–46(2015). [CrossRef] [Google Scholar]
- Ghosh, R., Ravi, K., & Ravi, V. A novel deep learning architecture for sentiment classification. In 2016 3rd International Conference on Recent Advances in Information Technology (RAIT) (pp. 511–516). IEEE. (2016) [Google Scholar]
- Abbasi, A., Chen, H., Thoms, S., & Fu, T. Affect analysis of web forums and blogs using correlation ensembles. IEEE transactions on knowledge and data engineering, 20(9), 1168–1180 (2008). [CrossRef] [Google Scholar]
- Pang, B., Lee, L., & Vaithyanathan, S. Thumbs up? Sentiment classification using machine learning techniques. arXiv preprint cs/0205070 (2002). [Google Scholar]
- Heikal, M., Torki, M., & El-Makky, N. Sentiment analysis of Arabic Tweets using deep learning. Procedía Computer Science, 142, 114–122 (2018). [CrossRef] [Google Scholar]
- Chakraborty, K., Bhattacharyya, S., Bag, R., & Hassanien, A. E. Comparative sentiment analysis on a set of movie reviews using deep learning approach. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 311–318). Springer, Cham (2018). [Google Scholar]
- Wang, J., Fu, J., Xu, Y., & Mei, T. Beyond Object Recognition: Visual Sentiment Analysis with Deep Coupled Adjective and Noun Neural Networks. In IJCAI (pp. 3484–3490) (2016). [Google Scholar]
- Liao, S., Wang, J., Yu, R., Sato, K., & Cheng, Z. CNN for situations understanding based on sentiment analysis of twitter data. Procedia computer science, 111, 376381(2017). [CrossRef] [Google Scholar]
- Rong, W., Nie, Y., Ouyang, Y., Peng, B., & Xiong, Z. Auto-encoder based bagging architecture for sentiment analysis. Journal of Visual Languages & Computing, 25(6), 840–849 (2014). [CrossRef] [Google Scholar]
- Bhargava, R., Sharma, Y., & Sharma, S. Sentiment analysis for mixed script indic sentences. In 2016 International conference on advances in computing, communications and informatics (ICACCI) (pp. 524–529). IEEE (2016) [CrossRef] [Google Scholar]
- Kilimci, Z.H., & Akyokus, S. Deep learning-and word embedding-based heterogeneous classifier ensembles for text classification. Complexity. (2018). [Google Scholar]
- Mandelbaum, A., & Shalev, A. Word embeddings and their use in sentence classification tasks. arXiv preprint arXiv: 1610.08229 (2016). [Google Scholar]
- Patil, S., Gune, A., & Nene, M. Convolutional neural networks for text categorisation with latent semantic analysis. International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS). 10.1109/ICECDS.2017.8390217, IEEE (2017). [Google Scholar]
- Blitzer, J., Dredze, M., & Pereira, F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th annual meeting of the association of computational linguistics (pp. 440–447) (2007). [Google Scholar]
- Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253 (2018). [CrossRef] [Google Scholar]
- Bansal, B., & Srivastava, S. (2018). Sentiment classification of online consumer reviews using word vector representations. Procedia computer science, 132, 11471153. [Google Scholar]
- Azarang, A., & Kehtarnavaz, N. A Review of Multi-Objective Deep Learning Speech Denoising Methods. Speech Communication (2020). [Google Scholar]
- Jensen, J., & Taal, C. H. An algorithm for predicting the intelligibility of speech masked by modulated noise maskers. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(11), 2009–2022. (2016). [CrossRef] [Google Scholar]
- Santos, J. F., & Falk, T. H. Speech dereverberation with context-aware recurrent neural networks. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(7), 1236–1246 (2018). [CrossRef] [Google Scholar]
- Hershey, J. R., Chen, Z., Le Roux, J., & Watanabe, S. Deep clustering: Discriminative embeddings for segmentation and separation. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 31–35). IEEE (2016). [CrossRef] [Google Scholar]
- Amazon, (2018). Amazon electronic product review dataset. https://nijianmo.github.io/amazon/index.html [Google Scholar]
- Sebastiani, F. Machine learning in automated text categorisation. ACM computing surveys (CSUR), 34(1), 1–47(2002). [CrossRef] [Google Scholar]
- Veale, M., & Binns, R. Fairer machine learning in the real world: Mitigating discrimination without collecting sensitive data. Big Data & Society, 4(2), 2053951717743530 (2017). [CrossRef] [Google Scholar]
- Sadia, A., Khan, F., & Bashir, F. An Overview of Lexicon-Based Approach For Sentiment Analysis (2018). [Google Scholar]
- Cristianini, N., & Shawe-Taylor, J. An introduction to support vector machines and other kernel-based learning methods. Cambridge University press (2000). [CrossRef] [Google Scholar]
- Collaboration, S. I. Machine Learning and Health Care Disparities in Dermatology (2018). [Google Scholar]
- Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., & Chen, T. Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377 (2018). [CrossRef] [Google Scholar]
- O’Shea, K., & Nash, R. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458 (2015). [Google Scholar]
- Hochreiter, S., & Schmidhuber, J. Long short-term memory. Neural computation, 9(8), 1735–1780 (1997). [CrossRef] [Google Scholar]
- Setiono, R., Baesens, B., & Mues, C. Recursive neural network rule extraction for data with mixed attributes. IEEE Transactions on Neural Networks, 19(2), 299307(2008). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.