Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01033
Number of page(s) 15
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801033
Published online 08 September 2025
  1. Wang, L., Zhang, J.: 'Adaptive Multi-Armed Bandit Learning for Task Offloading in Edge Computing', arXiv preprint arXiv:2306.05856, 2023 [Google Scholar]
  2. Chen, X., Hou, I.H.: 'Contextual restless multi-armed bandits with application to demand response decision-making'. Proc. IEEE 63rd Conf. Decision and Control (CDC), December 2024, pp. 2652–2657 [Google Scholar]
  3. Wakayama, S., Ahmed, N.: 'Observation-Augmented Contextual Multi-Armed Bandits for Robotic Exploration with Uncertain Semantic Data', arXiv preprint arXiv:2312.12583, 2023 [Google Scholar]
  4. Zafar, S., Feraud, R., Blavette, A., et al.: 'Decentralized smart charging of large-scale evs using adaptive multi-agent multi-armed bandits'. Proc. IET Conf., June 2023, pp. 1130–1134 [Google Scholar]
  5. Ma, Y., Jiang, F., Zhao, Z., et al.: 'Locally Private Nonparametric Contextual Multi-armed Bandits', arXiv preprint arXiv:2503.08098, 2025 [Google Scholar]
  6. Qin, H., Jun, K.S., Zhang, C.: 'Achieving adaptivity and optimality for multi-armed bandits using Exponential-Kullback Leiblier Maillard Sampling', arXiv preprint arXiv:2502.14379, 2025 [Google Scholar]
  7. Wakayama, S., Candela, A., Hayne, P., et al.: 'Active Inference in Contextual Multi-Armed Bandits for Autonomous Robotic Exploration', arXiv preprint arXiv:2408.04119, 2024 [Google Scholar]
  8. Zhou, A., Beyah, R., Kamaleswaran, R.: 'NeuroSep-CP-LCB: A Deep Learning-based Contextual Multi-armed Bandit Algorithm with Uncertainty Quantification for Early Sepsis Prediction', arXiv preprint arXiv:2503.16708, 2025 [Google Scholar]
  9. Gao, C., Li, S., Lei, W., et al.: 'KuaiRec: A fully-observed dataset and insights for evaluating recommender systems'. Proc. 31st ACM Int. Conf. Information & Knowledge Management, October 2022, pp. 540–550 [Google Scholar]
  10. Busa-Fekete, R., Szörényi, B., Weng, P., et al.: 'Multi-objective bandits: Optimizing the generalized gini index'. Proc. Int. Conf. Machine Learning, PMLR, July 2017, pp. 625–634 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.