Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01012
Number of page(s) 8
DOI https://doi.org/10.1051/itmconf/20257901012
Published online 08 October 2025
  1. X. Ye, F. Luo, H. Cui, J. Wang, X. Xiong, W. Zhang, J. Yu, W. Zhao, Research on insider threat detection based on personalized federated learning and behavior log analysis. Sci. Rep. 15, 19214 (2025). https://doi.org/10.1038/s41598-025-04029-w [Google Scholar]
  2. S. Song, N. Gao, Y. Zhang, C. Ma, BRITD: Behavior rhythm insider threat detection with time awareness and user adaptation. Cybersecur. 7, 2 (2024). https://doi.org/10.1186/s42400-023-00190-9 [Google Scholar]
  3. T. Tian, C. Zhang, B. Jiang, H. Feng, Z. Lu, Insider threat detection for specific threat scenarios. Cybersecur. 8, 17 (2025). https://doi.org/10.1186/s42400-024-00321-w [Google Scholar]
  4. X. Tao, J. Liu, Y. Yu, H. Zhang, Y. Huang, An insider threat detection method based on improved test-time training model. High-Confid. Comput. 5, 100283 (2025). https://doi.org/10.1016/j.hcc.2024.100283 [Google Scholar]
  5. M.F. Arroyabe, C.F. Arranz, I. Fernandez de Arroyabe, J. C. Fernandez de Arroyabe, Revealing the realities of cybercrime in small and medium enterprises: Understanding fear and taxonomic perspectives. Comput. Secur. 141, 103826 (2024). https://doi.org/10.1016/j.cose.2024.103826 [Google Scholar]
  6. S.S. Pennada, S.K. Nayak, Insider threat detection using behavioural analysis through machine learning and deep learning techniques. Int. Res. J. Multidiscip. Technovation 7, 74–86 (2025). https://doi.org/10.54392/irjmt2527 [Google Scholar]
  7. H. Sivaraman, Real-time anomaly detection for insider threat prevention in federal systems. ESP Int. J. Adv. Comput. Technol. 2, 62–67 (2024). https://doi.org/10.56472/25838628/IJACT-V2I4P109 [Google Scholar]
  8. M. N. Al-Mhiqani, T. Alsboui, T. Al-Shehari, K.H. Abdulkareem, R. Ahmad, M.A. Mohammed, Insider threat detection in cyber-physical systems: A systematic literature review. Comput. Electr. Eng. 119, 109489 (2024). https://doi.org/10.1016/j.compeleceng.2024.109489 [Google Scholar]
  9. U. Inayat, M. Farzan, S. Mahmood, M.F. Zia, S. Hussain, F. Pallonetto, Insider threat mitigation: Systematic literature review. Ain Shams Eng. J. 15, 103068 (2024). https://doi.org/10.1016/j.asej.2024.103068 [Google Scholar]
  10. B. Racherache, P. Shirani, A. Soeanu, M. Debbabi, CPID: Insider threat detection using profiling and cyber-persona identification. Comput. Secur. 132, 103350 (2023). https://doi.org/10.1016/j.cose.2023.103350 [Google Scholar]
  11. K. Randive, R. Mohan, A.M. Sivakrishna, An efficient pattern-based approach for insider threat classification using the image-based feature representation. J. Inf. Secur. Appl. 73, 103434 (2023). https://doi.org/10.1016/j.jisa.2023.103434 [Google Scholar]
  12. T. Patel, S.S. Iyer, SiaDNN: Siamese deep neural network for anomaly detection in user behavior, Knowl.-Based Syst. 324, 113769 (2025). https://doi.org/10.1016/j.knosys.2025.113769 [Google Scholar]
  13. H. Xiao, Y. Zhu, B. Zhang, Z. Lu, D. Du, Y. Liu, Unveiling shadows: A comprehensive framework for insider threat detection based on statistical and sequential analysis. Comput. Secur. 138, 103665 (2024). https://doi.org/10.1016/j.cose.2023.103665 [Google Scholar]
  14. M. Amiri-Zarandi, H. Karimipour, R.A. Dara, A federated and explainable approach for insider threat detection in IoT. Internet Things 24, 100965 (2023). https://doi.org/10.1016/j.iot.2023.100965 [Google Scholar]
  15. K. Fei, J. Zhou, Y. Zhou, X. Gu, H. Fan, B. Li, W. Wang, Y. Chen, LaAeb: A comprehensive log-text analysis based approach for insider threat detection. Comput. Secur. 148, 104126 (2025). https://doi.org/10.1016/j.cose.2024.104126 [Google Scholar]
  16. J. Glasser, B. Lindauer, Bridging the gap: A pragmatic approach to generating insider threat data, In 2013 IEEE Security and Privacy Workshops, IEEE, San Francisco, CA, USA, July 22 (2013), 98–104 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.