Open Access
Issue
ITM Web Conf.
Volume 9, 2017
The 2016 International Conference Applied Mathematics, Computational Science and Systems Engineering
Article Number 03002
Number of page(s) 4
Section Systems Engineering
DOI https://doi.org/10.1051/itmconf/20170903002
Published online 09 January 2017
  1. F. Garcia, D. Olmeda, J. M. Armingol and A. de la Escalera, “Hybrid fusion scheme for pedestrian detection based on laser scanner and far infrared camera,” Intelligent Vehicles Symposium, pp.1134–1139, Jun. 2010. [Google Scholar]
  2. Alberto Broggi, Pietro Cerri, Stefano Ghidoni, Paolo Grisleri and Ho Gi Jung, “A new approach to urban pedestrian detection for automatic braking,” IEEE Trans. Intell. Transp. Syst., vol. 10, no. 4, pp.594–605, Dec. 2009. [CrossRef] [Google Scholar]
  3. D. Gavrila, J. Giebel and S. Munder, “Vision-Based Pedestrian Detection: The PROTECTOR System,” Proc. IEEE Intelligent Vehicles Symp., pp: 13–18, 2004. [Google Scholar]
  4. P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: A benchmark,” in CVPR, 2009, pp. 304–311. [Google Scholar]
  5. P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 34, no. 4, pp. 743–761, 2012. [CrossRef] [Google Scholar]
  6. M. Enzweiler and D. M. Gavrila, “Monocular pedestrian detection: Survey and experiments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179–2195, Dec. 2009. [CrossRef] [Google Scholar]
  7. D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf, “Survey of pedestrian detection for advanced driver assistance systems,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 32, no. 7, pp. 1239–1258, 2010. [CrossRef] [Google Scholar]
  8. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in CVPR, 2005, pp. I: 886–893. [Google Scholar]
  9. Q. A. Zhu, M. C. Yeh, K. T. Cheng, and S. Avidan, “Fast human detection using a cascade of histograms of oriented gradients,” in CVPR, 2006, pp. II: 1491–1498. [Google Scholar]
  10. T. Watanabe, S. Ito, and K. Yokoi, “Co-occurrence histograms of oriented gradients for pedestrian detection,” in PSIVT, 2009, pp. 37–47. [Google Scholar]
  11. R. Benenson, M. Mathias, R. Timofte, and L. J. V. Gool, “Pedestrian detection at 100 frames per second,” in CVPR. IEEE, 2012, pp. 2903–2910. [Google Scholar]
  12. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE Conference on Computer Vision and Pattern Recognition, 2001. [Google Scholar]
  13. Markus Enzweiler, “Monocular Pedestrian Detection: Survey and Experiments,” IEEE Transactions on pattern analysis and machine intelligence, vol. 31, no. 12, pp: 2179–2195, Dec. 2009. [CrossRef] [Google Scholar]
  14. D.M. Gavrila and S. Munder, “Multi-Cue Pedestrian Detection and Tracking from a Moving Vehicle,” Int’l J. Computer Vision, vol. 73, no. 1, pp: 41–59, 2007. [CrossRef] [Google Scholar]
  15. Roland Schweiger, Heiko Neumann and Werner Ritter, “Multiple-cue data fusion with particle filters for vehicle detection in night view automotive applications,” IEEE Intelligent Vehicle Symposium, pp:753–758, 2005. [Google Scholar]
  16. D. Gavrila, J. Giebel and S. Munder, “Vision-Based Pedestrian Detection: The PROTECTOR System,” Proc. IEEE Intelligent Vehicles Symp., pp: 13–18, 2004. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.