Open Access
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 01008
Number of page(s) 5
Section Session 1: Robotics
Published online 05 September 2017
  1. LIU Huidan Rui Jianwu, Wu Jian. Encoding Detection and Conversion of Tibetan Web Pages [C] // 25th Anniversary Conference of Chinese Information Society of China. [Google Scholar]
  2. Wu Jian, Rui Jianwu, Liu Huidan. Tibetan web page and its code identification method: CN, CN 101055593 A[P]. 2007. [Google Scholar]
  3. Chen YZ, Li BL, Yu SW. The Design and Implementation of a Tibetan Word Segmentation System[J]. Journal of Chinese Information Processing, 2003. [Google Scholar]
  4. Cai Z J, Cai R. Design of a Tibetan Word Segmentation System[J]. Computer Engineering & Science, 2011, 33(5):151–154. [Google Scholar]
  5. Liu H, Minghua N, Zhao W, et al. SegT:A Practical Tibetan Word Segmentation System[J]. Journal of Chinese Information Processing, 2012, 26(1):97–103. [Google Scholar]
  6. Shi XD, Lu YJ. A Tibetan Segmentation System—Yangjin[J]. Journal of Chinese Information Processing, 2011, 25(4):54–56. [Google Scholar]
  7. Li YC, Jiang J, Jia YJ, Yu HZ. TIP-LAS: TIP-LAS: An Open Source Toolkit for Tibetan Word Segmentation and POS Tagging [J]. Journal of Chinese Information Processing, 2015, 29(6):203–207. [Google Scholar]
  8. Li YC, Jia YJ, Zong CQ, Yu HZl. Research and Implementation of Tibetan Automatic Word Segmentation Based on Conditional Random Field[J]. Journal of Chinese Information Processing, 2013, 27(4):52–58. [Google Scholar]
  9. Sun Z Wang. Overview on the Advance of the Research on Named Entity Recognition[J]. New Technology of Library & Information Service, 2010. [Google Scholar]
  10. Yu HZ, Jiang T, Ma N.Named Entity Recognition for Tibetan Texts[J].Lecture Notes in Engineering and Computer Science,2010,2180. [Google Scholar]
  11. Dou R, Jia YJ, Huang W.Automatic recognition of tibetan name with the combination of statistics and regular. Journal of Changchun Institute of Technology (Social Science Edition), 11 (2) 113–115.,2010.2:113–115. [Google Scholar]
  12. Sun Y, Yan X, Zhao X, et al. Research on automatic recognition of Tibetan personal names based on multi-features[C]// International Conference on Natural Language Processing and Knowledge Engineering. IEEE, 2010:1–5. [Google Scholar]
  13. Jia Y, Yachao L I, Zong C, et al. A Hybrid Approach to Tibetan Person Name Identification by Maximum Entropy Model and Conditional Random Fields[J]. Journal of Chinese Information Processing, 2014. [Google Scholar]
  14. Hua Q, Jiang W, Zhao H, et al. Tibetan name entity recognition with perceptron model[J]. Computer Engineering & Applications, 2014. [Google Scholar]
  15. Kang C, Long C, Jiang D. Tibetan names recognition research based on CRF[J]. Computer Engineering and Applications, 2015. [Google Scholar]
  16. Zhu J, Li T, Liu S. Research on Tibetan name recognition technology under CRF[J]. Journal of Nanjing University, 2016. [Google Scholar]
  17. Hänig C, Bordag S, Thomas S. Modular classifier ensemble architecture for named entity recognition on low resource systems[C]//Workshop Proceedings of the 12th Edition of the KONVENS Conference. 2014: 113–116. [Google Scholar]
  18. Das A, Garain U. CRF-based Named Entity Recognition @ICON 2013[J]. Computer Science, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.