Open Access
Issue
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
Article Number 04020
Number of page(s) 11
Section Session 4: Information Theory and Information Systems
DOI https://doi.org/10.1051/itmconf/20171204020
Published online 05 September 2017
  1. T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance models. IEEE Trans. Pattern Analysis and Machine Intelligence, pages 681–685, 6 2001. [CrossRef] [Google Scholar]
  2. J. Matthews and S. Baker. Active appearance models revisited.International Journal of Computer Vision, 63(6):135–164,2004. [CrossRef] [Google Scholar]
  3. R. Fergus, A. Perona, and A. Zisserman. A sparse object category model for efficient learning and exhaustive recognition. In IEEE conf. on Computer Vision and Pattern Recognition, 2005. [Google Scholar]
  4. S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans.Pattern Analysis and Machine Intelligence, pages 1475–1490, 2004. [CrossRef] [Google Scholar]
  5. P.F. Felzenszwalb and D.P. Huttenlocher. Pictorial structures for object recognition. International Journal of Computer Vision, pages 55–79, 2005. [CrossRef] [Google Scholar]
  6. Y. Amit and A. Trouve. Pop: Patchwork of parts models for object recognition. International Journal of Computer Vision, pages 267–282, 2007. [CrossRef] [Google Scholar]
  7. L. Kyoung-Mi. Component-based face detection and verification. Pattern Recognition Letters, pages 200–214, 2008. [Google Scholar]
  8. H. Schneiderman and T. Kanade. Object detection using the statistics of parts. International Journal of Computer Vision, pages 151–177, 2004. [CrossRef] [Google Scholar]
  9. A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment model for object detection. In European conf. on Computer Vision, 2006. [Google Scholar]
  10. J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object detection. In International conf. on Computer Vision, 2005. [Google Scholar]
  11. B. Leibe, E. Seeman, and B. Schiele. Pedestrian detection in crowded scenes. In IEEE conf. on Computer Vision and Pattern Recognition, pages 878–885, 2005. [Google Scholar]
  12. R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In IEEE conf. on Computer Vision and Pattern Recognition, pages 264–271, 2003. [EDP Sciences] [Google Scholar]
  13. E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky. Learning hierarchical models of scenes, objects, and parts. In International conf. on Computer Vision, pages 1331–1338, 2005. [Google Scholar]
  14. B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, pages 259–289, 2008. [CrossRef] [Google Scholar]
  15. P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In IEEE conf. on Computer Vision and Pattern Recognition, pages 151–168, 2008. [Google Scholar]
  16. D. Crandall, P. Felzenszwalb, and D. Huttenlocher. Spatial priors for part-based recognition using statistical models. In IEEE conf. on Computer Vision and Pattern Recognition, 2005. [Google Scholar]
  17. D.G. Lowe. Distinctive image features from scale-invariant key points. International Journal of Computer Vision, 60(2):91–110, 2004. [Google Scholar]
  18. S. Belongie, J. Malik, and J. Puzicha. Matching shapes. In International Conference on Computer Vision, pages 454–461, 2001. [Google Scholar]
  19. W. T. Freeman, K. Tanaka, J. Ohta, and K. kyuma. Computer vision for computer games. In 2nd International Conference on Automatic Face and Gesture Recognition, pages 100–105, 1996. [CrossRef] [Google Scholar]
  20. W. T. Freeman and M. Roth. Orientation histograms for hand gestrue recognition. In Intel. Workshop on Automatic Face and Gesture-Recognition, pages 296–391, 1995. [EDP Sciences] [Google Scholar]
  21. A. Ashbrook, N. Thacker, P. Rockett, and C. Brown. Robust recognition of scaled shapes using pairwise geometrichistograms. In Proc. Sixth British Machine Vision Conf., pages 503–512, 1995. [Google Scholar]
  22. N. Dalal and B. Triggs. Histgrams of oriented gradients forhuman detection. In IEEE conf. on Computer Vision and Pattern Recognition, 2005. [Google Scholar]
  23. J. Shotton, A. Blake, and R. Cipolla. Multi-scale categoricalobject recognition using contour fragments. IEEE Trans.Pattern Analysis and Machine Intelligence, 2008. [Google Scholar]
  24. J. Sullivan, O. Danielsson, and S. Carlsson. Exploiting part based models and edge boundaries for object detection. In Digital Image computing, 2008. [Google Scholar]
  25. V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent contour segments for object detection. IEEE Transaction on MAMI, 2008. [Google Scholar]
  26. G. Bouchard and B. Trigs. Hierarchical par-bbased visual object categorization. In IEEE conf. on Computer Vision and Pattern Recognition, 2005. [Google Scholar]
  27. L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for object detection. In IEEE conf. on Computer Vision and Pattern Recognition, 2010. [Google Scholar]
  28. F. Mahmoudi and J. Shanbehzadeh. Image retrieval based on shape similarity by edge orientation auto correlogram. Pattern Recognition, pages 1725–1736, 2003. [CrossRef] [Google Scholar]
  29. D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging andrandom subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, pages 1088–1099, 2006. [Google Scholar]
  30. T. Dacheng, T. Xiaoou, and L. Xuelong. Which components areimportant for interactive image searching? IEEE Transactionson Circuits and Systems for Video Technology, 2008. [Google Scholar]
  31. G. Xinbo, X. Bing, T. Dacheng, and L. Xuelong. Image categorization: Graph edit distance + edge direction histogram. Pattern Recognition, pages 3179–3191, 2008. [Google Scholar]
  32. K. Young-Woo and O. Il-Seok. Watermarking text document images using edge direction histograms. Pattern Recognition Letters, pages 1243–1251, 2004. [Google Scholar]
  33. Pedro F. Felzenszwalb, Ross B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. IEEE Trans. Pattern Analysis and Machine Intelligence, 2010. [Google Scholar]
  34. S. Mahamud, L. R. Williams, K. K. Thornber, and K. Xu. Segmentation of multiple salient closed contours from realimages. IEEE Transaction on MAMI, 2003. [Google Scholar]
  35. Chunhui Gu, J. J. Lim, P. Arbelaez, and J. alik. Recognitionusing regions. In IEEE conf. on Computer Vision and Pattern Recognition, pages 1030–1037, 2009. [Google Scholar]
  36. Chih-Chung Chang and Chih-Jen Lin. Libsvm: a libraryfor support vector machines. Software available at http://www.csie.ntu.edu.tw/_cjlin/libsvm, 2001. [Google Scholar]
  37. P. Viola and M. jones. Rapid object detection using a boosted cascade of simple features. In IEEE conf. on Computer Visionand Pattern Recognition, pages 1–8, 2001. [Google Scholar]
  38. A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic object recognition with boosting. IEEE Trans. Pattern Analysis and Machine Intelligence, pages 516–431, 2006. [Google Scholar]
  39. V. Ferrari, L. Fevrier, and C. Schmid. Accurate object detectionwith deformable shape models learnt from images. In IEEE conf. on Computer Vision and Pattern Recognition, pages 564–571, 2007. [Google Scholar]
  40. M. Fritz and B. Schiele. Decomposition, dscovery and detectionof visual categories using topic models. In IEEE conf. onComputer Vision and Pattern Recognition, pages Part I: 511–518, 2008 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.