Open Access
Issue |
ITM Web Conf.
Volume 21, 2018
Computing in Science and Technology (CST 2018)
|
|
---|---|---|
Article Number | 00006 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/itmconf/20182100006 | |
Published online | 12 October 2018 |
- J. Michalski, P. Kozierski, J. Zienkiewicz, Porównanie metod estymacji stanu systemów dynamicznych, PAR, 4, 41–47, (2017) [CrossRef] [Google Scholar]
- Z. Gomolka, B. Twarog, J. Bartman, Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem, Discrete and Continuous Dynamical SystemsSeries AI, ssue SUPPL., 505–514, (2011) [Google Scholar]
- J. Cheng, D. Chen, R. Landry, L. Zhao, D. Guan, An Adaptive Unscented Kalman Filtering Algorithm for MEMS/GPS Integrated Navigation Systems, J. of App. Math., 2014, (2014). [Google Scholar]
- Z. Gomolka, B. Twarog, E. Zeslawska, Cognitive Investigation on Pilot Attention During Take-Offs and Landings Using Flight Simulator. Artificial Intelligence and Soft Computing. ICAISC 2017. vol 10246. (2017) [Google Scholar]
- S. Akhlaghi, N. Zhou, Z. Huang, Exploring adaptive interpolation to mitigate nonlinear impact on estimating dynamic states, IEEE PES General Meeting (Denver, CO, USA, 2015) [Google Scholar]
- S. Bordignon, M. Scagliarini, Monitoring algorithms for detecting changes in the ozone concentrations, Environmetrics, 11, 2, 125–137, (2000) [CrossRef] [Google Scholar]
- P. Marantos, Y. Koveos, K.J. Kyriakopoulos, UAV State Estimation using Adaptive Complementary Filters, IEEE Trans. Control Syst. Technol., 24, 4, 1214–1226, (2016) [Google Scholar]
- S. Akhlaghi, N. Zhou, Z. Huang: Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation, IEEE Power and Energy Conference (PES) General Meeting (Chicago, IL, 1–5, 2017) [Google Scholar]
- R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME – J. of Basic Eng., 35–45, (1960) [Google Scholar]
- G. Welch, G. Bishop, An Introduction to the Kalman Filter, University of North Carolina at Chapel Hill, Chapel Hill, NC, (2006) [Google Scholar]
- M. Tomera, K. Pozorski, Porównanie metod estymacji zmiennych stanu w układzie kaskadowym dwóch zbiorników, Zesz. Nau. Wydz. Elek. i Auto. PG., 31, 131–138, (2012) [Google Scholar]
- E. Blanchard, A. Sandu, C. Sandu, Parameter Estimation Method Using an Extended Kalman Filter, Proceedings of the Joint North America (Asia-Pacific ISTVS Conf. and Ann. Meet. of Jap. Soc. for Terra., Fairbanks, AK, 2007) [Google Scholar]
- Z. Gomółka, B. Twaróg, E. Żesławska, A. Lewicki, T. Kwater, Using Artificial Neural Networks to Solve the Problem Represented by BOD and DO Indicators, Water 2018, 10(1), 4, (2018) [Google Scholar]
- E. Dudek-Dyduch, Z. Gomolka, Neural network design without learning, (6th International Conference on Neural Networks and Soft Computing, Zakopane, 2003) [Google Scholar]
- Z. Gomolka, E. Dudek-Dyduch, Y.P. Kondratenko, From Homogeneous Network to Neural Nets with Fractional Derivative Mechanism. Artificial Intelligence and Soft Computing. (ICAISC 2017) [Google Scholar]
- P. Holnicki, Z. Nahorski, A. Żochowski, Modelowanie procesów środowiska naturalnego, (2000) [Google Scholar]
- T. Kwater, R. Pekala, P. Krutys, The mathematical models of water pollution and interpretation of their distribution. Technol. News 2009, 1, 130–132, (2009) [Google Scholar]
- V. Gourishankar, M.A. Lawal, A digital water quality controller for polluted streams, Inter. J. of Syst. Scie., 9, 899–919, (1978) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.