Open Access
Issue |
ITM Web Conf.
Volume 30, 2019
29th International Crimean Conference “Microwave & Telecommunication Technology” (CriMiCo’2019)
|
|
---|---|---|
Article Number | 06005 | |
Number of page(s) | 10 | |
Section | Passive Components (5) | |
DOI | https://doi.org/10.1051/itmconf/20193006005 | |
Published online | 27 November 2019 |
- L. E. Larson, R. H. Hackett, M. A. Melendes, R. F. Lohr, Micromachined microwave actuator (MIMAC) technology – a new tuning approach for microwave integrated circuits, IEEE 1991 Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 27-30 (1991) [Google Scholar]
- H. Hosaka, H. Kuwano, K. Yanagiswa, Electromagnetic microrelays: concepts and fundamental characteristics, Sensors and Actuators A, 40, pp. 41-47 (1994). [CrossRef] [Google Scholar]
- S. Roy, M. Mehregany, Fabrication of electrostatic nickel microrelays by nickel surface micromachining, Proceedings IEEE Micro Electro Mechanical Systems, pp. 353-357 (1995) [Google Scholar]
- J. Simon, S. Saffer, C.-J. Kim, A micromechanical relay with a thermally-driven mercury micro-drop, Proceedings of Ninth International Workshop on Micro Electromechanical Systems, pp. 515-520 (1996) [Google Scholar]
- S. Saffer, J. Simon, C.-J. Kim, K. H. Park, J.-H. Lee, Mercury-contact switching with gap-closing microcantilever, Micromachined Devices and Components II, 2882, pp. 204-209 (1996) [CrossRef] [Google Scholar]
- J. Simon, S. Saffer, F. Sherman, C.-J. Kim, Lateral polysilicon microrelays with a mercury microdrop contact, IEEE Transactions on Industrial Electronics, 45, pp. 854-860 (1998) [CrossRef] [Google Scholar]
- W. P. Taylor, M. G. Allen, Integrated magnetic microrelays: normally open, normally closed, and multi-pole devices, Proceedings of International Solid-State Sensors and Actuators Conference (Transducers’97), pp. 1149-1152 (1997) [Google Scholar]
- H. A. C. Tilmans, E. Fullin, H. Ziad, M. D. J. Van de Peer, J. Kesters, E. Van Geffen, J. Bergqvist, M. Pantus, E. Beyne, K. Baert, F. Naso, A fully-packaged electromagnetic microrelay, Technical Digest, IEEE International MEMS’99 Conference, Twelfth IEEE International Conference on Micro Electro Mechanical Systems, pp. 25-30 (1999) [Google Scholar]
- D. A. Czaplewski, C. D. Nordquist, G. A. Patrizi, G. M. Kraus, W. D. Cowan, RF MEMS switches with RuO2-Au contacts cycled to 10 Billion cycles, Journal of Microelectromechanical Systems, 22, pp. 655-661 (2013) [CrossRef] [Google Scholar]
- I. E. Lysenko, A. V. Tkachenko, O. A. Ezhova, Research of the microelectromechanical switch with different materials of metal membrane, Proceeding of SPIE, Proceeding of the International Conference Micro- and Nanoelectronics – 2018 (ICMNE-2018), 10226, pp 1-12 (2019) [Google Scholar]
- U. S. Arathy, R. Resmi, Analysis of pull-in voltage of MEMS switches based on material properties and structural parameters, In International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 57-61 (2015) [Google Scholar]
- K. Srinivasa Rao, T. Lakshmi Narayana, K. Girija Sravani, Design and analysis of CPW based shunt capacitive RF MEMS switch, Cogent Eng, 4, pp. 1-9 (2017) [Google Scholar]
- I. E. Lysenko, A. V. Tkachenko, E. V. Sherova, A. V. Nikitin, Analytical approach in the development of RF MEMS switches, Electronics (Switzerland), 7(12), p. 1-23, (2018) [Google Scholar]
- J. Taye, K. Guha, S. Baishya, Design and analysis of RF MEMS shunt capacitive switch for low actuation voltage & high capacitance ratio, In Physics of Semiconductor Devices, pp. 445-448 (2014) [Google Scholar]
- M. Gyimesi, D. Ostergaard, Electro-Mechanical Transducer for MEMS Analysis in ANSYS, Int. Conf. Modeling/Simulation of Microsystems (MSM99), 7, pp. 270-273 (1999) [Google Scholar]
- Y. Zhu, H. D. Espinosa, Electromechanical Modeling and Simulation of RF MEMS Switches, 4th International Symposium on MEMS and Nanotechnology, 190, pp. 8-11 (2003) [Google Scholar]
- S. Timoshenko, S. Woinowsky-Kreiger, Theory of Plates and Shells, McGraw-Hill, New York (1959) [Google Scholar]
- E. Ventsel, T. Krauthamme, Thin Plates and Shells: Theory, Analysis, & Applications, 1st ed. New York: Marcel Dekker, Inc. (2001) [CrossRef] [Google Scholar]
- P. Osterberg, H. Yie, X. Cai, J. White, S. Senturia, Self-Consistent Simulation and Modeling of Electrostatically Deformed Diaphragms, 17th IEEE Int. Conference on Microelectromech. Syst., pp. 28-32 (1994) [Google Scholar]
- I. V. Avdeev, New Formulation for Finite Element Modeling Electrostatically Driven Microelectromechanical Systems, Ph.D. thesis, University of Pittsburgh, School of Engineering (2003) [Google Scholar]
- V. Rochus, Finite element modeling of strong electro-mechanical coupling in MEMS, Ph.D. thesis, University de Liege (2006) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.