Open Access
ITM Web Conf.
Volume 34, 2020
International Conference on Applied Mathematics and Numerical Methods – third edition (ICAMNM 2020)
Article Number 01004
Number of page(s) 8
Section Plenary Lectures
Published online 03 December 2020
  1. R.D. Mindlin and N.N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures 4(1), 109-124 (1968). [CrossRef] [Google Scholar]
  2. R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures 1(4), 417-438 (1965). [CrossRef] [Google Scholar]
  3. D.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids 51(8), 1477-1508 (2003). [CrossRef] [Google Scholar]
  4. F. Yang, A.C.M. Chong, D.C. Lam, and P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures 39(10), 2731-2743 (2002). [CrossRef] [Google Scholar]
  5. V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, Journal of Mathematical Analalysis and Applications 363, 19-28 (2010). [CrossRef] [Google Scholar]
  6. F. Martinez and R. Quintanilla, On the incremental problem in thermoelasticity of nonsimple materials, Zeitschrift fur angewandte Mathematik und Mechanik 78(10), 703-710 (1998). [CrossRef] [Google Scholar]
  7. M. Ciarletta, Thermoelasticity of nonsimple materials with thermal relaxation, Journal of Thermal Stresses 19(8), 731-748 (1996). [CrossRef] [Google Scholar]
  8. G. Ahmadi and K. Firoozbaksh, First strain-gradient theory of thermoelasticity, International Journal of Solids and Structures 11, 339-345 (1975). [CrossRef] [Google Scholar]
  9. M. Aouadi, A.R. El Dhaba, and A.F. Ghaleb, Stability aspects in strain gradient theory of thermoelasticity with mass diffusion, Zeitschrift fur angewandte Mathematik und Mechanik 98(10), 1794-1812 (2018). [CrossRef] [Google Scholar]
  10. R. Grot, Thermodynamics of a continuum with microstructure, International Journal of Engineering Science, 7, 801-814 (1969). [CrossRef] [Google Scholar]
  11. R.A. Toupin, Theories of elasticity with couple-stress, Archive for Rational Mechanics and Analysis 17, 85-112 (1964). [CrossRef] [Google Scholar]
  12. A.E. Green and R.S. Rivlin, Multipolar continuum mechanics, Archive for Rational Mechanics and Analysis 17, 113-47 (1964). [CrossRef] [Google Scholar]
  13. R.D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis 16, 51-78 (1964). [CrossRef] [Google Scholar]
  14. N.S. Wilkes, Continuous dependence and instability in linear thermoelasticity, SIAM J. Appl. Math. 11, 292-299, (1980). [CrossRef] [Google Scholar]
  15. A.E. Green and K.A. Lindsay, Thermoelasticity, Journal of Elasticity 2, 1-7 (1972). [CrossRef] [Google Scholar]
  16. S. Rionero and S. Chirita, Lagrange identity method in linear thermoelasticity, International Journal of Engineering Science 25, 935-946 (1987). [CrossRef] [Google Scholar]
  17. S. Chirita, Some applications of the Lagrange identity in thermoelasticity with one relaxation time, Journal of Thermal Stresses 11(3), 207-231 (1988). [CrossRef] [Google Scholar]
  18. M. Marin, A partition of energy in thermoelasticity of microstretch bodies, Nonliner Analysis: RWA 11(4), 2436-2447 (2010). [CrossRef] [Google Scholar]
  19. W.A. Day, Means and autocorrections in Elastodynamics, Archive for Rational Mechanics and Analysis 73, 243-256 (1980). [CrossRef] [Google Scholar]
  20. R.J. Knops, and L.E. Payne, On uniqueness and continuous dependence in dynamical problems of linear thermoelasticity, International Journal of Solids and Structures 6, 1173-1184 (1970). [CrossRef] [Google Scholar]
  21. M. Marin, On the minimum principle for dipolar materials with stretch, Nonlinear Analysis: RWA 10(3), 1572-1578 (2009). [CrossRef] [Google Scholar]
  22. M. Marin, On existence and uniqueness in thermoelasticity of micropolar bodies, Comptes rendus de l’Académie des Sciences Paris, Serie II, B 321(12), 375-480 (1995). [Google Scholar]
  23. M. Marin, Some basic theorems in elastostatics of micropolar materials with voids, Journal of Computational and Applied Mathematics 70(1), 115-126 (1996). [CrossRef] [Google Scholar]
  24. I. Abbas and M. Marin, “Analytical solution of thermoelastic interaction in a half-space by pulsed laser heating, Physica E-Low-Dimensional Systems & Nanostructures 87, 254-260 (2017). [CrossRef] [Google Scholar]
  25. E.M. Abd-Elaziz, M. Marin, and M.I.A. Othman, On the effect of Thomson and initial stress in a thermo-porous elastic solid under GN electromagnetic theory, Symmetry 11(3) (2019). [Google Scholar]
  26. C. Itu, A. Öchsner, S. Vlase, and M. Marin, Improved rigidity of composite circular plates through radial ribs, Proceedings of the Institution of Mechanical Engineers Part L Journal of Materials-Design and Applications 233(8), 1585-1593 (2019). [CrossRef] [Google Scholar]
  27. M. Marin, G. Stan, Weak solutions in Elasticity of dipolar bodies with stretch, Carpathian Journal of Mathematics 29(1), 33-40 (2013). [Google Scholar]
  28. K. Sharma and M. Marin, Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids, Analele Stiintifice ale Universitatii Ovidius Constanta 22(2), 151-175 (2014). [Google Scholar]
  29. S. Vlase, M. Marin, A. Öchsner, et al., Motion equation for a flexible one-dimensional element used in the dynamical analysis of a multibody system, Continuum Mechanics and Thermodynamics 31(3), 715-724 (2019). [CrossRef] [Google Scholar]
  30. S. Vlase and P.P. Teodorescu, Elasto-dynamics of a solid with a general “rigid” motion using FEM model. Part I: Theoretical approach, Romanian Journal of Physics 58 (7-8), 872-881 (2013). [Google Scholar]
  31. D. Iesan, Thermoelastic Models of Continua (Kluwer Academic Publishers, Dordrecht, 2004) 312 pp . [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.