Open Access
ITM Web Conf.
Volume 39, 2021
CIFEM'2020 – 3ème édition du Colloque International sur la Formation et l’Enseignement des Mathématiques et des sciences
Article Number 01010
Number of page(s) 15
Section Approches pédagogiques et didactiques pour l'enseignement des mathématiques
Published online 11 May 2021
  1. I. Akrouti, Students' conceptions of the definite integral in the first year of studying science at university, in Proceeding of the 11th Congress of the European Society of Research in Mathematics Education, CERME11, 5-10 February 2019, Utrecht, Netherlands. ERME Publishing. ISBN 978-90-73346-75-8 (2019) [Google Scholar]
  2. S. R. Jones, Areas, anti-derivatives, and adding up pieces: Definite integrals in pure mathematics and applied science contexts. Journal of Mathematical Behavior, 38, 9–28, (2015) [Google Scholar]
  3. V. Sealey, & M. Oehrtman, Calculus students ' assimilation of the Riemann integral, in Proceedings of the 10th Conference on Research in Undergraduate Mathematics Education. San Diego, CA: San Diego State University, (2007) [Google Scholar]
  4. P. W. Thompson, & J. Silverman, The concept of accumulation in calculus. In M.P. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate mathematics 43–52. Washington, DC: Mathematical Association of America, (2008) [Google Scholar]
  5. V. Sealey, Definite integrals, Riemann sums, and area under a curve: What is necessary and sufficient?, in Proceedings of the 28th annual meeting of the North American chapter of the International Group for the Psychology of Mathematics Education. Merida, Mexico, (2006) [Google Scholar]
  6. V. Sealey, A framework for characterizing student understanding of Riemann sums and definite integrals. The Journal of Mathematical Behavior, 33, 1, 230–245, (2014) [Google Scholar]
  7. J. Bezuidenhout, & A. Olivier, Students' conceptions of the integral, in T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the International Group for the Psychology of Mathematics Education. Hiroshima, Japan, (2000) [Google Scholar]
  8. W. Hall, Student misconceptions of the language of calculus: Definite and indefinite integrals, in Proceedings of the 13th special interest group of the Mathematical Association of America on research in undergraduate mathematics education. Raleigh, NC (2010) [Google Scholar]
  9. I. Akrouti and S. Haddad, The impact of the teacher's choices on students ' learning: The case of Riemann integral in the first year of preparatory classes, in Proceeding of the 10th Congress of the European Society of Research in Mathematics Education, CERME10, 1–5 February 2017, Dublin, Ireland. ERME Publishing. ISBN 978-1-873769-73-7, (2018) [Google Scholar]
  10. A. Orton, Students' understanding of integration. Educational Studies in Mathematics, 14, 1, 1–18, (1983) [Google Scholar]
  11. S. Rasslan, & D. Tall, Definitions and images for the definite integral concept, in A. Cockburn & E. Nardi (Eds.), Proceedings of the 26th Conference of the International Group for the Psychology of Mathematics Education. Norwich, UK, (2002) [Google Scholar]
  12. S. R. Jones, Understanding the integral: Students' symbolic forms. The Journal of Mathematical Behavior, 32, 2, 122–141, (2013) [Google Scholar]
  13. S. R. Jones, Adding it all up: Reconceiving the introduction to the integral. Mathematics Teacher, 107, 5, 372–377, (2014) [Google Scholar]
  14. B. Czarnocha, & al, Conceptions of area: In students and in history. The College Mathematics Journal, 32, 2, 99–109, (2001) [Google Scholar]
  15. I. Akrouti, Conceptions des étudiants de l'intégrale définie en Classe préparatoire, in Hausberger, M. Bosch & F. Chelloughi (Eds.), Third conference of the International Network for Didactic Research in University Mathematics, INDRUM2020, 12-19 September 2020, Bizerte, Tunisia, ISSN 2496-1027, (2020) [Google Scholar]
  16. D. Tall & S. Vinner, Concept image and concept definition in mathematics, with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169, (1981) [CrossRef] [Google Scholar]
  17. A. Sfard, On the dual nature of mathematical conceptions: reflections on process and objects as different sides of the same coin. Educational Studies in Mathematics, 1991, 22, 1–36, (1991) [Google Scholar]
  18. I. Akrouti, Transition secondaire/supérieur en analyse : cas de l'intégrale de Riemann en classes préparatoires, Mémoire de master en didactique des mathématiques, de l'Université Virtuelle de Tunis, ISEFC, (2016) [Google Scholar]
  19. I. Akrouti, Les difficultés liées à l'apprentissage de l'intégrale définie à l'entrée en classe préparatoire, in Proceeding of the Septième édition du colloque l'Espace Mathématique Francophone, EMF 2018, 22-26 Octobre 2018, 615–619, Parie, France. Edition de l'IREM de Paris ISBN : 978-2-86612-391-8, (2019) [Google Scholar]
  20. A. Sfard, & L. Linchevski, The gains and pitfalls of reification - the case of algebra. Educational Studies in Mathematics, 26, 191–228, (1994) [Google Scholar]
  21. I. Ghedamsi & R. Tanazefti, Sur les difficultés d'apprentissage des nombres complexes en fin du secondaire. Petit x, 98, 29–52, (2015) [Google Scholar]
  22. S. Haddad, Que retiennent les nouveaux bacheliers de la notion d'intégrale enseignée au lycée ? Petit x, 92, 5–30, (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.